早教吧作业答案频道 -->数学-->
如图1,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC
题目详情
如图1,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;
(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;
(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC=∠CFE;
(3)如图3,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,△ABC、△CEF、△ADF的面积分别为S△ABC、S△CEF、S△ADF,且S△ABC=36,则S△CEF-S△ADF=______.(仅填结果)

(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;
(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC=∠CFE;
(3)如图3,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,△ABC、△CEF、△ADF的面积分别为S△ABC、S△CEF、S△ADF,且S△ABC=36,则S△CEF-S△ADF=______.(仅填结果)
▼优质解答
答案和解析
(1)证明:∵∠ACB=90°,
∴∠A+∠B=90°,
∵∠ACD=∠B,
∴∠A+∠ACD=90°,
∴∠ADC=90°,
即CD⊥AB,
证明时应用了“直角三角形两锐角互余”和“有两个锐角互余的三角形是直角三角形”;
(2)证明:∵AE平分∠BAC,
∴∠CAE=∠BAE,
∵∠CAE+∠AEC=90°,∠BAE+∠AFD=90°,
∴∠AEC=∠AFD,
∵∠AFD=∠CFE(对顶角相等),
∴∠AEC=∠CFE;
(3)∵BC=3CE,AB=4AD,
∴S△ACD=
S△ABC=
×36=9,S△ACE=
S△ABC=
×36=12,
∴S△CEF-S△ADF=S△ACE-S△ACD
=12-9
=3.
故答案为:3.
∴∠A+∠B=90°,
∵∠ACD=∠B,
∴∠A+∠ACD=90°,
∴∠ADC=90°,
即CD⊥AB,
证明时应用了“直角三角形两锐角互余”和“有两个锐角互余的三角形是直角三角形”;
(2)证明:∵AE平分∠BAC,
∴∠CAE=∠BAE,
∵∠CAE+∠AEC=90°,∠BAE+∠AFD=90°,
∴∠AEC=∠AFD,
∵∠AFD=∠CFE(对顶角相等),
∴∠AEC=∠CFE;
(3)∵BC=3CE,AB=4AD,
∴S△ACD=
1 |
4 |
1 |
4 |
1 |
3 |
1 |
3 |
∴S△CEF-S△ADF=S△ACE-S△ACD
=12-9
=3.
故答案为:3.
看了 如图1,在Rt△ABC中,∠...的网友还看了以下:
求证:两椭圆b^2x^2+a^2y^2-a^2b^2=0,a^2x^2+b^2y^2-a^2b^2 2020-04-06 …
关于矩阵,已知A为n阶可逆矩阵(n>=2),交换A的第1.2列得B,A*为A的伴随矩阵,则A.交换 2020-04-13 …
已知椭圆T的方程为x^2/a^2+y^2/b^2=1(a>b>0),A(0,b),B(0,-b)和 2020-04-27 …
半径为r的球,它与xy平面的相交的圆的半径为a,与yz平面的相交的圆的半径为b,与zx平面的相交的 2020-05-13 …
已知椭圆X^2/a^2+Y^2/b^2=1上任意一点M(除短轴端点外)与短轴两端点B1,B2的连线 2020-05-20 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)与X轴的正方向交于A,0为坐标原点,以OA 2020-06-29 …
已知对数函数的图像与直线有2个交点,交点的具体范围在哪儿咋知道啊.如已知InX=8X-8有2交点. 2020-07-30 …
抛物线与双曲线的交点问题将抛物线方程y^2=2px(p>0)代入双曲线方程x^2/a^2-y^2/ 2020-08-01 …
人教版高中物理3-1中:多用表的2.5V交流电压表盘读数为什么是不均匀的?还有,多用表的2.5V以上 2020-11-29 …
1下列哪种不属于交通信号:A交通信号灯B交警指挥C交通标志D交通标线2货车在高速上载人需安装座椅或安 2020-12-05 …