早教吧作业答案频道 -->数学-->
如图1,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC
题目详情
如图1,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;
(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;
(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC=∠CFE;
(3)如图3,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,△ABC、△CEF、△ADF的面积分别为S△ABC、S△CEF、S△ADF,且S△ABC=36,则S△CEF-S△ADF=______.(仅填结果)

(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;
(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC=∠CFE;
(3)如图3,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,△ABC、△CEF、△ADF的面积分别为S△ABC、S△CEF、S△ADF,且S△ABC=36,则S△CEF-S△ADF=______.(仅填结果)
▼优质解答
答案和解析
(1)证明:∵∠ACB=90°,
∴∠A+∠B=90°,
∵∠ACD=∠B,
∴∠A+∠ACD=90°,
∴∠ADC=90°,
即CD⊥AB,
证明时应用了“直角三角形两锐角互余”和“有两个锐角互余的三角形是直角三角形”;
(2)证明:∵AE平分∠BAC,
∴∠CAE=∠BAE,
∵∠CAE+∠AEC=90°,∠BAE+∠AFD=90°,
∴∠AEC=∠AFD,
∵∠AFD=∠CFE(对顶角相等),
∴∠AEC=∠CFE;
(3)∵BC=3CE,AB=4AD,
∴S△ACD=
S△ABC=
×36=9,S△ACE=
S△ABC=
×36=12,
∴S△CEF-S△ADF=S△ACE-S△ACD
=12-9
=3.
故答案为:3.
∴∠A+∠B=90°,
∵∠ACD=∠B,
∴∠A+∠ACD=90°,
∴∠ADC=90°,
即CD⊥AB,
证明时应用了“直角三角形两锐角互余”和“有两个锐角互余的三角形是直角三角形”;
(2)证明:∵AE平分∠BAC,
∴∠CAE=∠BAE,
∵∠CAE+∠AEC=90°,∠BAE+∠AFD=90°,
∴∠AEC=∠AFD,
∵∠AFD=∠CFE(对顶角相等),
∴∠AEC=∠CFE;
(3)∵BC=3CE,AB=4AD,
∴S△ACD=
1 |
4 |
1 |
4 |
1 |
3 |
1 |
3 |
∴S△CEF-S△ADF=S△ACE-S△ACD
=12-9
=3.
故答案为:3.
看了 如图1,在Rt△ABC中,∠...的网友还看了以下:
关于逆温现象的叙述,正确的是()A.盆地底部,白天容易出现逆温B.逆温出现时,对流运动将会增强C. 2020-04-09 …
设二阶a可逆,且A逆=(a1,a2b1,b2)对于矩阵P1=(1,20,1)P2=(011,0)令 2020-04-12 …
⒈运算规定:(a*b)=|a-b| a,b为实数,求(√7*3)+√7 ⒉设⒈运算规定:(a*b) 2020-05-13 …
cosA+cosB=a,sinA-sinB=b,a^2+b^2不等于0,求cos(A-B)=?题目 2020-05-23 …
在△abc中,∠C=90°,∠a,∠b,∠c的对边为a,b,c.求(1)已知a=3.25,∠a=3 2020-07-09 …
1.已知a,b,c∈R.a+b+c=1a²+b²+c²=1/2求证c≥02(1)已知a,c是正实数 2020-07-14 …
有关矩阵的问题?好像在转置矩阵中,(a*b)'=b'*a';逆矩阵是不是有公式:(a*b)^-1= 2020-07-21 …
计算:已知a分之1加b分之1=根号5(a不等于b)求b(a-b)分之a减a(a-b)分之计算:已知 2020-08-01 …
集合A(-1,1),集合B(b-a,a+b),a=1是A交B的充分条件,求b的范围求高手们快帮帮小 2020-08-02 …
急求~~顺逆水行驶的应用题一艘船往返于AB两地,由A到B顺流行驶需要6个小时,由B到A逆流行需要8个 2021-01-12 …