早教吧作业答案频道 -->数学-->
如图1,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC
题目详情
如图1,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;
(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;
(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC=∠CFE;
(3)如图3,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,△ABC、△CEF、△ADF的面积分别为S△ABC、S△CEF、S△ADF,且S△ABC=36,则S△CEF-S△ADF=______.(仅填结果)

(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;
(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC=∠CFE;
(3)如图3,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,△ABC、△CEF、△ADF的面积分别为S△ABC、S△CEF、S△ADF,且S△ABC=36,则S△CEF-S△ADF=______.(仅填结果)
▼优质解答
答案和解析
(1)证明:∵∠ACB=90°,
∴∠A+∠B=90°,
∵∠ACD=∠B,
∴∠A+∠ACD=90°,
∴∠ADC=90°,
即CD⊥AB,
证明时应用了“直角三角形两锐角互余”和“有两个锐角互余的三角形是直角三角形”;
(2)证明:∵AE平分∠BAC,
∴∠CAE=∠BAE,
∵∠CAE+∠AEC=90°,∠BAE+∠AFD=90°,
∴∠AEC=∠AFD,
∵∠AFD=∠CFE(对顶角相等),
∴∠AEC=∠CFE;
(3)∵BC=3CE,AB=4AD,
∴S△ACD=
S△ABC=
×36=9,S△ACE=
S△ABC=
×36=12,
∴S△CEF-S△ADF=S△ACE-S△ACD
=12-9
=3.
故答案为:3.
∴∠A+∠B=90°,
∵∠ACD=∠B,
∴∠A+∠ACD=90°,
∴∠ADC=90°,
即CD⊥AB,
证明时应用了“直角三角形两锐角互余”和“有两个锐角互余的三角形是直角三角形”;
(2)证明:∵AE平分∠BAC,
∴∠CAE=∠BAE,
∵∠CAE+∠AEC=90°,∠BAE+∠AFD=90°,
∴∠AEC=∠AFD,
∵∠AFD=∠CFE(对顶角相等),
∴∠AEC=∠CFE;
(3)∵BC=3CE,AB=4AD,
∴S△ACD=
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 3 |
∴S△CEF-S△ADF=S△ACE-S△ACD
=12-9
=3.
故答案为:3.
看了 如图1,在Rt△ABC中,∠...的网友还看了以下:
老师出了两道题给17个同学做,有5人只做对第一道题,有8人只做对第二道题,其余的同学两道题全做对( 2020-05-20 …
王老师出了两道题给17个同学做,有六个人只做对第一道题,有7人只做对第二道题,其余的同学两道题都做 2020-05-20 …
在17人中,老师出两道题,做对第一道题的有6人,做对第二道题的有7人,求两道题都做对的有多少人?只 2020-05-20 …
某大学毕业生参加一个公司的招聘考试,考试分为笔试和面试,笔试有A、B两个题目该生答对A、B两题的概 2020-07-06 …
(本题有a、b两小题,考生任选一题解答,不得两题都解.若两题都解,则以a小题计分)我解答abab小题 2020-12-13 …
(本题有a、b两小题,考生任选一题解答,不得两题都解.若两题都解,则以a小题计分)我解答小题(请在横 2020-12-13 …
某用人单位招聘分笔试和面试两个环节,笔试有A、B两个题目,有一应聘者答对A、B两题的概率分别为12和 2020-12-21 …
(2006•嘉兴一模)(本题有A类、B类两题,A类每题8分,B类每题10分.你可以根据自己的学习情况 2020-12-26 …
(本题有a、b两小题,考生任选一题解答,不得两题都解.若两题都解,则以a小题计分)我解答小题(请在横 2020-12-26 …
(本题有a、b两小题,考生任选一题解答,不得两题都解.若两题都解,则以a小题计分)我解答小题(请在横 2020-12-26 …