早教吧作业答案频道 -->数学-->
如图1,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC
题目详情
如图1,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;
(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;
(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC=∠CFE;
(3)如图3,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,△ABC、△CEF、△ADF的面积分别为S△ABC、S△CEF、S△ADF,且S△ABC=36,则S△CEF-S△ADF=______.(仅填结果)

(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;
(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC=∠CFE;
(3)如图3,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,△ABC、△CEF、△ADF的面积分别为S△ABC、S△CEF、S△ADF,且S△ABC=36,则S△CEF-S△ADF=______.(仅填结果)
▼优质解答
答案和解析
(1)证明:∵∠ACB=90°,
∴∠A+∠B=90°,
∵∠ACD=∠B,
∴∠A+∠ACD=90°,
∴∠ADC=90°,
即CD⊥AB,
证明时应用了“直角三角形两锐角互余”和“有两个锐角互余的三角形是直角三角形”;
(2)证明:∵AE平分∠BAC,
∴∠CAE=∠BAE,
∵∠CAE+∠AEC=90°,∠BAE+∠AFD=90°,
∴∠AEC=∠AFD,
∵∠AFD=∠CFE(对顶角相等),
∴∠AEC=∠CFE;
(3)∵BC=3CE,AB=4AD,
∴S△ACD=
S△ABC=
×36=9,S△ACE=
S△ABC=
×36=12,
∴S△CEF-S△ADF=S△ACE-S△ACD
=12-9
=3.
故答案为:3.
∴∠A+∠B=90°,
∵∠ACD=∠B,
∴∠A+∠ACD=90°,
∴∠ADC=90°,
即CD⊥AB,
证明时应用了“直角三角形两锐角互余”和“有两个锐角互余的三角形是直角三角形”;
(2)证明:∵AE平分∠BAC,
∴∠CAE=∠BAE,
∵∠CAE+∠AEC=90°,∠BAE+∠AFD=90°,
∴∠AEC=∠AFD,
∵∠AFD=∠CFE(对顶角相等),
∴∠AEC=∠CFE;
(3)∵BC=3CE,AB=4AD,
∴S△ACD=
1 |
4 |
1 |
4 |
1 |
3 |
1 |
3 |
∴S△CEF-S△ADF=S△ACE-S△ACD
=12-9
=3.
故答案为:3.
看了 如图1,在Rt△ABC中,∠...的网友还看了以下:
将矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10.如图(15),在O 2020-05-16 …
已知二次函数f(x)=ax^2+bx+c和一次函数g(x)=-bx其中a,b,c∈R且满足a>b> 2020-07-09 …
以抛物线C:y2=2px的焦点F为圆心的圆,交C的准线l于P,Q两点,与C在第一象限内的交点为M, 2020-07-22 …
设f(x)=ax2+bx+c(a>b>c)f(1)=0.g(x)=ax+b1.求证:f(x)与g( 2020-07-30 …
假设函数y=f(x)在闭区间[0,1]上连续在开区间(0,1)上二阶可导,过点A(0,f(0))与 2020-07-31 …
假设函数y=f(x)在闭区间[0,1]上连续在开区间(0,1)上二阶可导,过点A(0,f(0))与 2020-08-01 …
设f(x)在[a,b]上连续,在(a,b)内有二阶导数,连接点A(a,f(a)和B(b,f(b)) 2020-08-02 …
设f(x)在[a,b]上连续,在(a,b)内有二阶导数,连接点A(a,f(a)和B(b,f(b)) 2020-08-02 …
设f(x)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a))与B(b,f(b)) 2020-08-02 …
一道高数证明题设函数f(x)在区间[a,b]上连续,在(a,b)二阶可导,联结点(a,f(a))与( 2020-12-07 …