早教吧作业答案频道 -->其他-->
已知直线AB∥CD,E为直线AB,CD外的一点,连接AE,EC.(1)E在直线AB的上方(如图1),求证:∠AEC+∠EAB=∠ECD;(2)∠EAB和∠ECD的角平分线交于点F(如图2),求证:∠AEC=2∠AFC;(3)若E在
题目详情
已知直线AB∥CD,E为直线AB,CD外的一点,连接AE,EC.
(1)E在直线AB的上方(如图1),求证:∠AEC+∠EAB=∠ECD;
(2)∠EAB和∠ECD的角平分线交于点F(如图2),求证:∠AEC=2∠AFC;
(3)若E在直线AB,CD之间,在(2)条件下,且∠AFC比∠AEC的
倍多20°,则∠AEC的度数为______.(不用写出解答过程)

(1)E在直线AB的上方(如图1),求证:∠AEC+∠EAB=∠ECD;
(2)∠EAB和∠ECD的角平分线交于点F(如图2),求证:∠AEC=2∠AFC;
(3)若E在直线AB,CD之间,在(2)条件下,且∠AFC比∠AEC的
3 |
2 |

▼优质解答
答案和解析

(1)如图1,
∵AB∥CD,
∴∠EBM=∠ECD,
∵∠AEC+∠EAB=∠EBM,
∴∠AEC+∠EAB=∠ECD;
(2)∵AF平分∠EAB,CF平分∠ECD,
∴∠ECD=2∠FCD,∠EAB=2∠FAM,
∵∠ECD=∠EBM=2∠FAM+∠AEC,∠FCD=∠FBM=∠AFC+∠FAM,
∴∠ECD=2∠FAM+∠AEC=2∠FAM+2∠AFC,
∴∠AEC=2∠AFC;
(3)
如图3,过E作EM∥AB,过F作FN∥AB,
∵AB∥CD,
∴ABB∥CD∥EM,FN∥AB∥CD
∴∠BAE+∠AEM=180°,∠ECD+∠MEC=180°,∠BAF=∠AFN,∠FCD=∠CFN,
∴∠EAB+∠ECD=360°-∠AEC,∠AFC=∠FAB+∠FCD,
∵AF平分∠EAB,CF平分∠ECD,
∴∠FAB=
∠EAB,∠FCD=
∠ECD,
∴∠AFC=180°-
∠AEC,
∵∠AFC比∠AEC的
倍多20°,
∴∠AFC=
∠AEC=20°=180°-
∠AEC,
解得:∠AEC=80°,
故答案为:80°.

(1)如图1,
∵AB∥CD,
∴∠EBM=∠ECD,
∵∠AEC+∠EAB=∠EBM,
∴∠AEC+∠EAB=∠ECD;
(2)∵AF平分∠EAB,CF平分∠ECD,
∴∠ECD=2∠FCD,∠EAB=2∠FAM,
∵∠ECD=∠EBM=2∠FAM+∠AEC,∠FCD=∠FBM=∠AFC+∠FAM,
∴∠ECD=2∠FAM+∠AEC=2∠FAM+2∠AFC,
∴∠AEC=2∠AFC;
(3)

如图3,过E作EM∥AB,过F作FN∥AB,
∵AB∥CD,
∴ABB∥CD∥EM,FN∥AB∥CD
∴∠BAE+∠AEM=180°,∠ECD+∠MEC=180°,∠BAF=∠AFN,∠FCD=∠CFN,
∴∠EAB+∠ECD=360°-∠AEC,∠AFC=∠FAB+∠FCD,
∵AF平分∠EAB,CF平分∠ECD,
∴∠FAB=
1 |
2 |
1 |
2 |
∴∠AFC=180°-
1 |
2 |
∵∠AFC比∠AEC的
3 |
2 |
∴∠AFC=
3 |
2 |
1 |
2 |
解得:∠AEC=80°,
故答案为:80°.
看了 已知直线AB∥CD,E为直线...的网友还看了以下:
已知a*5/6=8/5*b=c*3/2=d-150%,且a,b,c都不等于0,则a,b,c,d中最 2020-04-07 …
把下面的式子写成(A+B)(A-B)的形式(1)(a+b+c+d)(-a-b+c+d)(2)(把下 2020-04-27 …
24 (a+b)/(c+d)=(√a^2+b^2)/√ (c^2+d^2)成立证明:(1)a/b= 2020-05-14 …
已知整数a,b,c,d满足abcd=6(a-1)(b-1)(c-1)(d-1)(1)是否存在满足上 2020-06-03 …
数学题!1.已知x,y,z均不为0,并且x∧2+4y∧2+9z∧2=x∧3+2y∧3+3z∧3=x 2020-06-11 …
求解a(1/b+1/c+1/d)+b(1/a+1/c+1/d)+c(1/b+1/a+1/d)+d( 2020-06-12 …
已知棱长为1的正方体的俯视图是一个面积为1的正方形则该正方体的正视图的面积不可能等于()(A)1( 2020-07-08 …
请问在matlab2013版中,怎么实现空集‘[]’在ismember函数中顺利应用例如:A=[1 2020-07-21 …
四阶行列式,好吧这是个证明题,1,1,1,1;a,b,c,d;a²,b²,c²,d²;a^4,b^ 2020-08-01 …
用反证法证明命题:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,则a,b,c,d 2020-08-01 …