早教吧作业答案频道 -->数学-->
求渐近线方程已知x²/a²-y²/b²=1(a>0,b>0)与抛物线y²=8x有一个公共的焦点F,且两线有一个交点P,若丨PF丨=5,则双曲线的渐近线方程.
题目详情
求渐近线方程
已知x²/a²-y²/b²=1(a>0,b>0)与抛物线y²=8x有一个公共的焦点F,且两线有一个交点P,若丨PF丨=5,则双曲线的渐近线方程.
已知x²/a²-y²/b²=1(a>0,b>0)与抛物线y²=8x有一个公共的焦点F,且两线有一个交点P,若丨PF丨=5,则双曲线的渐近线方程.
▼优质解答
答案和解析
y²=8x焦点F为(2,0)
∴c=2
c²=4
a²+b²=4
P在抛物线上
∴设P(x,y)
丨PF丨=5
∴x+2=5.到焦点距离=到准弦距离
∴x=3
y=±2√6
代入
x²/a²-y²/b²=1
得
a^4-37a²+36=0
(a²-36)(a²-1)=0
∴a²=1
b²=3
渐近线y=±b/ax
y=±√3x
渐近线方程:
√3x-y=0和√3x+y=0
∴c=2
c²=4
a²+b²=4
P在抛物线上
∴设P(x,y)
丨PF丨=5
∴x+2=5.到焦点距离=到准弦距离
∴x=3
y=±2√6
代入
x²/a²-y²/b²=1
得
a^4-37a²+36=0
(a²-36)(a²-1)=0
∴a²=1
b²=3
渐近线y=±b/ax
y=±√3x
渐近线方程:
√3x-y=0和√3x+y=0
看了 求渐近线方程已知x²/a²-...的网友还看了以下:
f(x)=2sinx+1①设w>0,若y=f(wx)在f(x)=[-π/2,2π/3]上是增函数, 2020-05-17 …
设f(x0)≠0,f(x)在x0处连续,则f(x)在x0可导是丨f(x)丨在x0可导的充要条件? 2020-06-18 …
x0处连续则f(x)在x0可导是丨f(x)丨在x0可导的充要条件这句话对吗?为何? 2020-06-18 …
设f(x0)≠0,f(x)在x0处连续,则f(x)在x0可导是丨f(x)丨在x0可导的充要条件?对 2020-06-18 …
若f(x)=㏒a^x(a>0,a≠1)在区间[2,+∞)上恒有丨f(x)丨>1,求实数a的取值范围 2020-07-20 …
(2013•嘉兴模拟)已知函数f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0 2020-07-26 …
已知f(x)=x²-ax+b,(a,b∈R),A={x丨f(x)-x=0,x∈R},B={x丨f( 2020-08-01 …
高中导数题,急求解!已知函数f(x)=x^3-3x若对于区间[-3,2]上任意的x1,x2都有丨f( 2020-12-03 …
高等代数题目求证:若(x^3+x^2+x+1)丨(f(x^2)+xg(x^2)),则(x+1)丨f( 2020-12-23 …
初中化学推断题在A-F六种物质中,A是某些装饰材料释放的空气污染物,其溶液可浸制动物标本,BDE为气 2020-12-28 …