早教吧作业答案频道 -->数学-->
求矩阵A=(0-22,-2-34,24-3)的全部特征值.并求正交矩阵T和对角矩阵D,使T-1AT=D.
题目详情
求矩阵A= (0 -2 2,-2 -3 4,2 4 -3)的全部特征值.并求正交矩阵T和对角矩阵D,使T-1AT=D.
▼优质解答
答案和解析
解: |A-λE|=
-λ -2 2
-2 -3-λ 4
2 4 -3-λ
r2+r3
-λ -2 2
0 1-λ 1-λ
2 4 -3-λ
c3-c2
-λ -2 4
0 1-λ 0
2 4 -7-λ
= (1-λ)(λ^2+7λ-8)
= (1-λ)(λ-1)(λ+8)
所以A的特征值为1,1,-8
(A-E)x=0 的基础解系为 a1=(2,-1,0)^T, a2=(2,4,5)^T
(A+8E)x=0 的基础解系为 a3=(1,2,-2)^T
3个特征向量已正交, 单位化为:
b1=(1/√5)(2,-1,0)^T
b2=(1/√45)(2,4,5)^T
b3=(1/3)(1,2,-2)^T
令 T=(b1,b2,b3), 则T为正交矩阵, 且 T^-1AT=diag(1,1,-8).
-λ -2 2
-2 -3-λ 4
2 4 -3-λ
r2+r3
-λ -2 2
0 1-λ 1-λ
2 4 -3-λ
c3-c2
-λ -2 4
0 1-λ 0
2 4 -7-λ
= (1-λ)(λ^2+7λ-8)
= (1-λ)(λ-1)(λ+8)
所以A的特征值为1,1,-8
(A-E)x=0 的基础解系为 a1=(2,-1,0)^T, a2=(2,4,5)^T
(A+8E)x=0 的基础解系为 a3=(1,2,-2)^T
3个特征向量已正交, 单位化为:
b1=(1/√5)(2,-1,0)^T
b2=(1/√45)(2,4,5)^T
b3=(1/3)(1,2,-2)^T
令 T=(b1,b2,b3), 则T为正交矩阵, 且 T^-1AT=diag(1,1,-8).
看了 求矩阵A=(0-22,-2-...的网友还看了以下:
矩形的面积为12平方厘米,一条边长4CM,则矩形的对角线长为多少?1.矩形的面积为12平方厘米,一 2020-05-20 …
矩形的性质:①矩形的对角线()②矩形的四个角都是()③矩形是轴矩形的性质:①矩形的对角线()②矩形 2020-05-21 …
矩形的对角线中相交成的角中,有一个角是60°,这个角所对的...矩形的对角线中相交成的角中,有一个 2020-05-23 …
“因为四边形ABCD是矩形,所以四边形ABCD的对角线相等”以上推理的大前提是()A.矩形都是四边 2020-06-13 …
若矩阵A与对角矩阵D相似,则A^2=对角矩阵D的对角元都为-1 2020-07-30 …
矩阵的一个小问题什么叫对角矩阵?除主对角线上其余位置的元素都为0的矩阵?那主对角线是能否为0?比如 2020-08-02 …
下列说法错误的是a对角线互相平分的四边形是平行四边形b对角线互相垂直的四边形是矩形c对角线相等的平行 2020-10-31 …
(2011•绵阳)下列关于矩形的说法,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四 2020-11-12 …
实对称矩阵的对角化公式的问题实对称矩阵的对角化的基本定理是Q^TAQ=∧,如果知道正交矩阵Q,对角矩 2020-11-27 …
求2次型的标准型,意义是什么?如果说:特征矩阵是为了将矩阵做正交分解的对角化,那么2次型的标准型就是 2020-12-06 …