早教吧作业答案频道 -->数学-->
设无穷等差数列{an}的前n项和为sn.若首项a1=3/2,公差d=1,求满足(sk)22的正整数k.求所有的无穷等差数列{an},使得对于一切正整数k都有sk2=(sk)2成立
题目详情
设无穷等差数列{an}的前n项和为sn.若首项a1=3/2,公差d=1,求满足(sk)22的正整数k.求所有的无穷等差数列{an},使得对于一切正整数k都有sk2=(sk)2成立
▼优质解答
答案和解析
a(n) = 3/2 + (n-1) = n + 1/2 = (2n+1)/2.
s(n) = n(n+1)/2 + n/2 = n(n+2)/2,
s[k^2] = k^2(k^2 + 2)/2,
[s(k)]^2 = [k(k+2)/2]^2 = k^2(k+2)^2/4,
s[k^2] = k^2(k^2 + 2)/2 = [s(k)]^2 = k^2(k+2)^2/4,
2(k^2 + 2) = (k+2)^2 = k^2 + 4k + 4,
0 = k^2 - 4k = k(k-4),
k=4.
----------------
a(n) = a + (n-1)d.
s(n) = na + n(n-1)d/2.
s[k^2] = ak^2 + k^2(k^2-1)d/2.
[s(k)]^2 = [ak + k(k-1)d/2]^2.
s[k^2] = ak^2 + k^2(k^2 - 1)d/2 = [s(k)]^2 = [ak + k(k-1)d/2]^2 = k^2[a + (k-1)d/2]^2,
a + (k^2 - 1)d/2 = [a + (k-1)d/2]^2 = [a-d/2 + kd/2]^2 = (a-d/2)^2 + (a-d/2)dk + (d/2)^2k^2,
0 = k^2(d/2 - d^2/4) - k(a-d/2)d + (a-d/2) - (a-d/2)^2
要使得上面等式恒成立,
则,
0 = d^2/4 - d/2 = (d/4)(d-2),d=2.
0 = (a-d/2)d,a = d/2 = 1.
0 = (a-d/2)-(a-d/2)^2 成立.
因此,a(n) = 1 + 2(n-1) = 2n-1.
只有无穷等差数列{a(n) = 2n-1}使得对于一切正整数k,都有s(k^2) = [s(k)]2成立.
s(n) = n(n+1)/2 + n/2 = n(n+2)/2,
s[k^2] = k^2(k^2 + 2)/2,
[s(k)]^2 = [k(k+2)/2]^2 = k^2(k+2)^2/4,
s[k^2] = k^2(k^2 + 2)/2 = [s(k)]^2 = k^2(k+2)^2/4,
2(k^2 + 2) = (k+2)^2 = k^2 + 4k + 4,
0 = k^2 - 4k = k(k-4),
k=4.
----------------
a(n) = a + (n-1)d.
s(n) = na + n(n-1)d/2.
s[k^2] = ak^2 + k^2(k^2-1)d/2.
[s(k)]^2 = [ak + k(k-1)d/2]^2.
s[k^2] = ak^2 + k^2(k^2 - 1)d/2 = [s(k)]^2 = [ak + k(k-1)d/2]^2 = k^2[a + (k-1)d/2]^2,
a + (k^2 - 1)d/2 = [a + (k-1)d/2]^2 = [a-d/2 + kd/2]^2 = (a-d/2)^2 + (a-d/2)dk + (d/2)^2k^2,
0 = k^2(d/2 - d^2/4) - k(a-d/2)d + (a-d/2) - (a-d/2)^2
要使得上面等式恒成立,
则,
0 = d^2/4 - d/2 = (d/4)(d-2),d=2.
0 = (a-d/2)d,a = d/2 = 1.
0 = (a-d/2)-(a-d/2)^2 成立.
因此,a(n) = 1 + 2(n-1) = 2n-1.
只有无穷等差数列{a(n) = 2n-1}使得对于一切正整数k,都有s(k^2) = [s(k)]2成立.
看了 设无穷等差数列{an}的前n...的网友还看了以下:
第一题n=0s=0DOn=n+1s=s+n的平方LOOPUNTILs大于100PRINTnEND 2020-04-26 …
可以参考的公式是:s[1]=a[1];s[n]=s[n-1]>=0?s[n-1]+a[n]:a[n 2020-05-14 …
信噪比是如何计算的?题目中说信噪比是30dB,但是在计算信道容量C=B*Log2(1+S/N)的时 2020-05-14 …
若执行以下程序段,其运行结果是charc[]={‘a’,‘b’,‘\0’,‘c’,‘\0’};pr 2020-05-20 …
括号内为下标:S(n)为a(n)的前n项和.a(1)=a,a(n+1)=S(n)+3^n.设b(n 2020-05-22 …
数列怎么这么难!1.已知a(1)=3且a(n)=S(n-1)+2^n,求an及Sn.2.已知S(n 2020-06-04 …
为什么平面上的S,N方向和指南针上S,N的方向不一样? 2020-06-15 …
首项为3,公差为2的等差数列,S[k]为其前k项和,则S=(1/S[1])+(1/S[2])+(1 2020-07-30 …
已知数列{an}的首项a1≠0,其前n项的和为SnSn+2无穷等比数列{a(n)}的首项a1=1, 2020-08-02 …
这个题用turboC和用Cfree结果正好相反为什么呢下面程序段的运行结果是()voidmain() 2020-11-23 …