早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛
题目详情
如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,-5).

(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有什么位置关系,并给出证明;
(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有什么位置关系,并给出证明;
(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)设抛物线解析式为:y=a(x-3)2+4,
将A(0,-5)代入求得:a=-1,
∴抛物线解析式为y=-(x-3)2+4=-x2+6x-5.
(2)抛物线的对称轴l与⊙C相离.证明:
令y=0,即-x2+6x-5=0,得x=1或x=5,
∴B(1,0),C(5,0).
如答图①所示,设切点为E,连接CE,
由题意易证Rt△ABO∽Rt△BCE,
∴
=
,
即
=
,
求得⊙C的半径CE=
=
=
;
而点C到对称轴x=3的距离为2,2>
,
∴抛物线的对称轴l与⊙C相离.
(3)存在.理由如下:
有两种情况:
(I)如答图②所示,点P在x轴上方.
∵A(0,-5),C(5,0),
∴△AOC为等腰直角三角形,∠OCA=45°;
∵PC⊥AC,∴∠PCO=45°.
过点P作PF⊥x轴于点F,则△PCF为等腰直角三角形.
设点P坐标为(m,n),则有OF=m,PF=CF=n,
OC=OF+CF=m+n=5 ①
又点P在抛物线上,
∴n=-m2+6m-5 ②
联立①②式,解得:m=2或m=5.
当m=5时,点F与点C重合,故舍去,
∴m=2,
∴n=3,
∴点P坐标为(2,3);
(II)如答图③所示,点P在x轴下方.
∵A(0,-5),C(5,0),
∴△AOC为等腰直角三角形,∠OAC=45°;
过点P作PF⊥y轴于点F,
∵PA⊥AC,
∴∠PAF=45°,即△PAF为等腰直角三角形.
设点P坐标为(m,n),则有PF=AF=m,OF=-n=OA+AF=5+m,
∴m+n=-5 ①
又点P在抛物线上,
∴n=-m2+6m-5 ②
联立①②式,解得:m=0或m=7.
当m=0时,点F与原点重合,故舍去,
∴m=7,
∴n=-12,
∴点P坐标为(7,-12).
综上所述,存在点P,使△ACP是以AC为直角边的直角三角形.点P的坐标为(2,3)或(7,-12).

将A(0,-5)代入求得:a=-1,
∴抛物线解析式为y=-(x-3)2+4=-x2+6x-5.
(2)抛物线的对称轴l与⊙C相离.证明:
令y=0,即-x2+6x-5=0,得x=1或x=5,
∴B(1,0),C(5,0).
如答图①所示,设切点为E,连接CE,
由题意易证Rt△ABO∽Rt△BCE,
∴
AB |
BC |
OB |
CE |
即
| ||
4 |
1 |
CE |
求得⊙C的半径CE=
4 | ||
|
4
| ||
26 |
2
| ||
13 |
而点C到对称轴x=3的距离为2,2>
2
| ||
13 |
∴抛物线的对称轴l与⊙C相离.
(3)存在.理由如下:

有两种情况:
(I)如答图②所示,点P在x轴上方.
∵A(0,-5),C(5,0),
∴△AOC为等腰直角三角形,∠OCA=45°;
∵PC⊥AC,∴∠PCO=45°.
过点P作PF⊥x轴于点F,则△PCF为等腰直角三角形.
设点P坐标为(m,n),则有OF=m,PF=CF=n,
OC=OF+CF=m+n=5 ①
又点P在抛物线上,
∴n=-m2+6m-5 ②
联立①②式,解得:m=2或m=5.
当m=5时,点F与点C重合,故舍去,
∴m=2,
∴n=3,
∴点P坐标为(2,3);
(II)如答图③所示,点P在x轴下方.

∵A(0,-5),C(5,0),
∴△AOC为等腰直角三角形,∠OAC=45°;
过点P作PF⊥y轴于点F,
∵PA⊥AC,
∴∠PAF=45°,即△PAF为等腰直角三角形.
设点P坐标为(m,n),则有PF=AF=m,OF=-n=OA+AF=5+m,
∴m+n=-5 ①
又点P在抛物线上,
∴n=-m2+6m-5 ②
联立①②式,解得:m=0或m=7.
当m=0时,点F与原点重合,故舍去,
∴m=7,
∴n=-12,
∴点P坐标为(7,-12).
综上所述,存在点P,使△ACP是以AC为直角边的直角三角形.点P的坐标为(2,3)或(7,-12).
看了 如图,在平面直角坐标系中,顶...的网友还看了以下:
发动机启动困难,大多发生在( )。A.启动系B.点火系C.燃料系D.启动系、点火系和燃料系 2020-05-31 …
汽油机( )可以将电源供给的12V低压电变为15~30kV的高压电。A.启动系B.点火系C.充电系D 2020-05-31 …
地层条件下,单位体积原油与在地面条件下脱气后的体积之比值称为()。A.收缩率B.溶解系数C.体积变化 2020-05-31 …
已下故障中属于点火过迟故障的是()。A.进气管回火B.点火系高压火弱C.发动机加速发闷D.起动时发动 2020-05-31 …
如图,点O是坐标系原点,直线y=kx+b与x轴交于点A,与直线y=-x+5交于点B,点B的纵坐标是 2020-06-14 …
点解我甘靓仔?点解我会甘靓仔呢?我每次出街都有好多女仔望住我,搞到我超唔好意思.我一问距地点解系甘 2020-06-16 …
如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,沿CP折叠 2020-07-31 …
如图,在平面直角坐标系内,O为原点,点A的坐标为(﹣3,0),经过A、O两点作半径为的⊙C,交y轴 2020-07-31 …
如图,在平面直角坐标系中,双曲线y=mx和直线y=kx+b交于A,B两点,点A的坐标为(-3,2) 2020-08-01 …
xiexie!请进一个渔民用网捕鱼,他把轻质竹竿的一端固定在河岸边的B点,绳系在竹竿的A点,鱼网掉在 2020-11-07 …