早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛
题目详情
如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,-5).

(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有什么位置关系,并给出证明;
(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有什么位置关系,并给出证明;
(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)设抛物线解析式为:y=a(x-3)2+4,
将A(0,-5)代入求得:a=-1,
∴抛物线解析式为y=-(x-3)2+4=-x2+6x-5.
(2)抛物线的对称轴l与⊙C相离.证明:
令y=0,即-x2+6x-5=0,得x=1或x=5,
∴B(1,0),C(5,0).
如答图①所示,设切点为E,连接CE,
由题意易证Rt△ABO∽Rt△BCE,
∴
=
,
即
=
,
求得⊙C的半径CE=
=
=
;
而点C到对称轴x=3的距离为2,2>
,
∴抛物线的对称轴l与⊙C相离.
(3)存在.理由如下:
有两种情况:
(I)如答图②所示,点P在x轴上方.
∵A(0,-5),C(5,0),
∴△AOC为等腰直角三角形,∠OCA=45°;
∵PC⊥AC,∴∠PCO=45°.
过点P作PF⊥x轴于点F,则△PCF为等腰直角三角形.
设点P坐标为(m,n),则有OF=m,PF=CF=n,
OC=OF+CF=m+n=5 ①
又点P在抛物线上,
∴n=-m2+6m-5 ②
联立①②式,解得:m=2或m=5.
当m=5时,点F与点C重合,故舍去,
∴m=2,
∴n=3,
∴点P坐标为(2,3);
(II)如答图③所示,点P在x轴下方.
∵A(0,-5),C(5,0),
∴△AOC为等腰直角三角形,∠OAC=45°;
过点P作PF⊥y轴于点F,
∵PA⊥AC,
∴∠PAF=45°,即△PAF为等腰直角三角形.
设点P坐标为(m,n),则有PF=AF=m,OF=-n=OA+AF=5+m,
∴m+n=-5 ①
又点P在抛物线上,
∴n=-m2+6m-5 ②
联立①②式,解得:m=0或m=7.
当m=0时,点F与原点重合,故舍去,
∴m=7,
∴n=-12,
∴点P坐标为(7,-12).
综上所述,存在点P,使△ACP是以AC为直角边的直角三角形.点P的坐标为(2,3)或(7,-12).
(1)设抛物线解析式为:y=a(x-3)2+4,将A(0,-5)代入求得:a=-1,
∴抛物线解析式为y=-(x-3)2+4=-x2+6x-5.
(2)抛物线的对称轴l与⊙C相离.证明:
令y=0,即-x2+6x-5=0,得x=1或x=5,
∴B(1,0),C(5,0).
如答图①所示,设切点为E,连接CE,
由题意易证Rt△ABO∽Rt△BCE,
∴
| AB |
| BC |
| OB |
| CE |
即
| ||
| 4 |
| 1 |
| CE |
求得⊙C的半径CE=
| 4 | ||
|
4
| ||
| 26 |
2
| ||
| 13 |
而点C到对称轴x=3的距离为2,2>
2
| ||
| 13 |
∴抛物线的对称轴l与⊙C相离.
(3)存在.理由如下:

有两种情况:
(I)如答图②所示,点P在x轴上方.
∵A(0,-5),C(5,0),
∴△AOC为等腰直角三角形,∠OCA=45°;
∵PC⊥AC,∴∠PCO=45°.
过点P作PF⊥x轴于点F,则△PCF为等腰直角三角形.
设点P坐标为(m,n),则有OF=m,PF=CF=n,
OC=OF+CF=m+n=5 ①
又点P在抛物线上,
∴n=-m2+6m-5 ②
联立①②式,解得:m=2或m=5.
当m=5时,点F与点C重合,故舍去,
∴m=2,
∴n=3,
∴点P坐标为(2,3);
(II)如答图③所示,点P在x轴下方.

∵A(0,-5),C(5,0),
∴△AOC为等腰直角三角形,∠OAC=45°;
过点P作PF⊥y轴于点F,
∵PA⊥AC,
∴∠PAF=45°,即△PAF为等腰直角三角形.
设点P坐标为(m,n),则有PF=AF=m,OF=-n=OA+AF=5+m,
∴m+n=-5 ①
又点P在抛物线上,
∴n=-m2+6m-5 ②
联立①②式,解得:m=0或m=7.
当m=0时,点F与原点重合,故舍去,
∴m=7,
∴n=-12,
∴点P坐标为(7,-12).
综上所述,存在点P,使△ACP是以AC为直角边的直角三角形.点P的坐标为(2,3)或(7,-12).
看了 如图,在平面直角坐标系中,顶...的网友还看了以下:
1.抛物线与x轴的两个交点间的距离是3.且过点(0,-2),(2,0)求解析式2.已知抛物线过(( 2020-05-15 …
求抛硬币的概率抛一枚硬币,得到正面或反面都是50%,求抛得两次都是反面的概率是多少?第一次为正面, 2020-06-03 …
高一物理——抛体运动:竖直上抛把一个小球以30m/s的速度从地面竖直上抛出.隔一秒时间,再从同一处 2020-06-05 …
1.向量a={2,-1,-2},b={1,1,z},问z为何値时两向量夹角最小,并求出最小值2判断 2020-06-12 …
如图所示,O为斜面的底端,在O点正上方的A、B两点分别以初速度vA、vB正对斜面抛出两个小球,结果 2020-06-15 …
怎么用圆柱的则面积求两个底面的面积 2020-06-27 …
概率论及数理统计里面的题目.求两点间距离的分布函数1.在(0,a)线段上任意抛两个点,(抛掷的两点 2020-08-03 …
丁丁、豆豆、峰峰三人打算去玩,由谁来请客呢?他们决定用抛硬币的方法来做决定.如果抛出两次并且都是正面 2020-11-11 …
如图,已知抛物线y=ax2+bx+c与x轴交于A(-4,0)和B(1,0),与y轴交与C(0,-2) 2021-01-10 …
已知等边三角形面积求两条等边的边长已知等边三角新的面积底边长度,高度,请问两条等边的边长可以求出来吗 2021-02-07 …