早教吧作业答案频道 -->其他-->
在正方体ABCD-A1B1C1D1中,E,F分别为D1C1,B1C1的中点,AC∩BD=P,A1C1∩EF=Q,如图所示.(1)点D,B,F,E共面吗?(2)作出直线A1C与平面BDEF的交点R的位置;(3)点P,Q,R共线吗?
题目详情

(1)点D,B,F,E共面吗?
(2)作出直线A1C与平面BDEF的交点R的位置;
(3)点P,Q,R共线吗?
▼优质解答
答案和解析
(1)共面,证明:由于CC1和BF在同一平面内,且不平行,故必相交,设交点为O,则OC1=C1C,同理,直线DE与CC1也相交,设交点为O1,则O1C1=C1C,故O1与O重合,得DE与BF交于O,故D,B,F,E共面.
(2)在正方体AC1中,连接PQ,
∵Q∈A1C1,∴Q∈平面A1C1CA.又Q∈EF,
∴Q∈平面BDEF,即Q是平面A1C1CA与平面BDEF的公共点,
同理,P也是平面A1C1CA与平面BDEF的公共点.
∴平面A1C1CA∩平面BDEF=PQ.
又A1C∩平面BDEF=R,
∴R∈A1C,
∴R∈平面A1C1CA,
R∈平面BDEF.
∴R是A1C与PQ的交点.如图.
(3)共线,证明:由(2)知,PQ=平面BDEG∩平面A1ACC1,R∈A1C,
而A1C⊂平面A1ACC1,故R∈平面A1ACC1,
同理,R∈平面BDEF,
故R∈PQ,即P,Q,R三点共线.

(2)在正方体AC1中,连接PQ,
∵Q∈A1C1,∴Q∈平面A1C1CA.又Q∈EF,
∴Q∈平面BDEF,即Q是平面A1C1CA与平面BDEF的公共点,
同理,P也是平面A1C1CA与平面BDEF的公共点.
∴平面A1C1CA∩平面BDEF=PQ.
又A1C∩平面BDEF=R,
∴R∈A1C,
∴R∈平面A1C1CA,
R∈平面BDEF.
∴R是A1C与PQ的交点.如图.
(3)共线,证明:由(2)知,PQ=平面BDEG∩平面A1ACC1,R∈A1C,
而A1C⊂平面A1ACC1,故R∈平面A1ACC1,
同理,R∈平面BDEF,
故R∈PQ,即P,Q,R三点共线.
看了 在正方体ABCD-A1B1C...的网友还看了以下:
点P在曲线C x²/4+y²=1上,若若存在过P的直线交曲线C于A点,交直线l:x=4于B点,(长 2020-05-13 …
如图所示,一定质量的理想气体,经过图线A→B→C→A的状态变化过程,AB的延长线过O点,CA与纵轴 2020-05-14 …
如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出 2020-06-15 …
如图所示,电场中A点的电场强度E=2.0×104N/C.将电荷量q=-2.0×10-8C的点电荷放 2020-07-18 …
的对称轴为x=,设抛物线与y轴交于A点,与x轴交于B、C两点(B点在C点的左边),锐角△ABC的高 2020-07-22 …
如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出 2020-08-03 …
abc三个人一起去一家咖啡馆就餐a点了1杯咖啡,1个蛋糕花了7.20$b点了2杯咖啡,2个蛋糕,3 2020-08-04 …
已知正数abc,且a/b+c=b/c+a=c/a+b=k.则在下列四个点中,在正比例函数y=kx图像 2020-11-01 …
如图,y=-x+3交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c(a≠0)经过A,B,C(1 2020-11-01 …
如图为“某时刻光照图”,阴影部分表示夜半球.下列叙述正确的是()A.A点的地方时是12时B.北京时间 2020-12-03 …