早教吧作业答案频道 -->其他-->
在正方体ABCD-A1B1C1D1中,E,F分别为D1C1,B1C1的中点,AC∩BD=P,A1C1∩EF=Q,如图所示.(1)点D,B,F,E共面吗?(2)作出直线A1C与平面BDEF的交点R的位置;(3)点P,Q,R共线吗?
题目详情

(1)点D,B,F,E共面吗?
(2)作出直线A1C与平面BDEF的交点R的位置;
(3)点P,Q,R共线吗?
▼优质解答
答案和解析
(1)共面,证明:由于CC1和BF在同一平面内,且不平行,故必相交,设交点为O,则OC1=C1C,同理,直线DE与CC1也相交,设交点为O1,则O1C1=C1C,故O1与O重合,得DE与BF交于O,故D,B,F,E共面.
(2)在正方体AC1中,连接PQ,
∵Q∈A1C1,∴Q∈平面A1C1CA.又Q∈EF,
∴Q∈平面BDEF,即Q是平面A1C1CA与平面BDEF的公共点,
同理,P也是平面A1C1CA与平面BDEF的公共点.
∴平面A1C1CA∩平面BDEF=PQ.
又A1C∩平面BDEF=R,
∴R∈A1C,
∴R∈平面A1C1CA,
R∈平面BDEF.
∴R是A1C与PQ的交点.如图.
(3)共线,证明:由(2)知,PQ=平面BDEG∩平面A1ACC1,R∈A1C,
而A1C⊂平面A1ACC1,故R∈平面A1ACC1,
同理,R∈平面BDEF,
故R∈PQ,即P,Q,R三点共线.

(2)在正方体AC1中,连接PQ,
∵Q∈A1C1,∴Q∈平面A1C1CA.又Q∈EF,
∴Q∈平面BDEF,即Q是平面A1C1CA与平面BDEF的公共点,
同理,P也是平面A1C1CA与平面BDEF的公共点.
∴平面A1C1CA∩平面BDEF=PQ.
又A1C∩平面BDEF=R,
∴R∈A1C,
∴R∈平面A1C1CA,
R∈平面BDEF.
∴R是A1C与PQ的交点.如图.
(3)共线,证明:由(2)知,PQ=平面BDEG∩平面A1ACC1,R∈A1C,
而A1C⊂平面A1ACC1,故R∈平面A1ACC1,
同理,R∈平面BDEF,
故R∈PQ,即P,Q,R三点共线.
看了 在正方体ABCD-A1B1C...的网友还看了以下:
设直线l的方程为(a+1)x+y-2-a=0若a>-1,直线l与x.y轴分别交于M.N两点,求△O 2020-05-12 …
一中子与一质量数为A(A>1)的原子核发生弹性正碰.若碰前原子核静止,则碰撞前与碰撞后中子的速率之 2020-05-13 …
已知函数f(x)=|ex+aex|,(a∈R)在区间[0,1]上单调递增,则实数a的取值范围是() 2020-07-09 …
下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是().(A)1∶1∶2(B)1 2020-07-18 …
如图,平行于x轴的直线l与y轴、直线y=3x、直线y=x分别交于点A、B、C.则下列结论正确的个数 2020-07-24 …
下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是 2020-07-31 …
下列命题中,真命题的个数是()①同位角相等;②经过直线外一点有且只有一条直线与这条直线平行;③长度 2020-07-31 …
下列条件中,不能判断△ABC为直角三角形的是()A.a=1.5,b=2,c=2.5B.a:b:c= 2020-08-03 …
下图由左至右分别解释为君主制、贵族制和和民主制。下列相关的解释不正确的是[]A.图1直观地反映出君主 2020-11-14 …
试判断如下以a、b、c为边长的三角形,其中不是直角三角形的是()A.c的关系满足a2-b2=c2B. 2021-01-22 …