早教吧作业答案频道 -->其他-->
(2013•房山区二模)(1)如图1,正方形ABCD中,E、F分别是BC、CD边上的点,且满足BE=CF,连接AE、BF交于点H..请直接写出线段AE与BF的数量关系和位置关系;(2)如图2,正方形ABCD中,E、F分别
题目详情
(2013•房山区二模)(1)如图1,正方形ABCD中,E、F分别是BC、CD边上的点,且满足BE=CF,连接AE、BF交于点H..请直接写出线段AE与BF的数量关系和位置关系;
(2)如图2,正方形ABCD中,E、F分别是BC、CD边上的点,连接BF,过点E作EG⊥BF于点H,交AD于点G,试判断线段BF与GE的数量关系,并证明你的结论;
(3)如图3,在(2)的条件下,连接GF、HD.
求证:①FG+BE≥
BF;
②∠HGF=∠HDF.

(2)如图2,正方形ABCD中,E、F分别是BC、CD边上的点,连接BF,过点E作EG⊥BF于点H,交AD于点G,试判断线段BF与GE的数量关系,并证明你的结论;
(3)如图3,在(2)的条件下,连接GF、HD.
求证:①FG+BE≥
| 2 |
②∠HGF=∠HDF.

▼优质解答
答案和解析
(1)AE=BF且AE⊥BF,
理由是:∵四边形ABCD是正方形,
∴∠ABE=∠C=90°,AB=BC,
∵在△ABE和△BCF中
∴△ABE≌△BCF(SAS),
∴AE=BF,∠BAE=∠CBF,
∵∠ABE=90°,
∴∠BAE+∠AEB=90°,
∴∠CBF+∠AEB=90°,
∴∠BHE=180°-90°=90°,
∴AE⊥BF.
(2)BF=GE,
证明:过点A作AM∥GE交BC于M,
∵EG⊥BF,
∴AM⊥BF,
∴∠BAM+∠ABF=90°,
∵正方形ABCD,
∴AB=BC,AD∥BC,∠ABC=∠BCD=90°,
∴∠CBF+∠ABF=90°,
∴∠BAM=∠CBF,
∵在△ABM和△BCF中
∴△ABM≌△BCF(ASA),
∴AM=BF,
∵AM∥GE且AD∥BC,
∴AM=GE,
∴BF=GE;
(3)证明:①:过点B作BN∥FG,且使BN=FG,
连接NG、NE,
∴四边形NBFG是平行四边形,
∴BF=NG,BF∥NG,
由(2)可知,BF⊥GE,且BF=GE,
∴NG⊥EG且NG=EG,
∴△NGE为等腰直角三角形,
由勾股定理得NE=
NG,
∴NE=
BF,
当点F与点D不重合,点E与点C不重合时,N、B、E三点不共线,
此时,在△BEN中,NB+BE>NE,即FG+BE>
BF,
当点F与点D重合,点E与点C重合时,N、B、E三点共线,
此时,NB+BE=NE,即FG+BE=
(1)AE=BF且AE⊥BF,理由是:∵四边形ABCD是正方形,
∴∠ABE=∠C=90°,AB=BC,
∵在△ABE和△BCF中
|
∴△ABE≌△BCF(SAS),
∴AE=BF,∠BAE=∠CBF,
∵∠ABE=90°,
∴∠BAE+∠AEB=90°,
∴∠CBF+∠AEB=90°,
∴∠BHE=180°-90°=90°,
∴AE⊥BF.
(2)BF=GE,
证明:过点A作AM∥GE交BC于M,
∵EG⊥BF,
∴AM⊥BF,
∴∠BAM+∠ABF=90°,
∵正方形ABCD,
∴AB=BC,AD∥BC,∠ABC=∠BCD=90°,
∴∠CBF+∠ABF=90°,
∴∠BAM=∠CBF,
∵在△ABM和△BCF中
|
∴△ABM≌△BCF(ASA),
∴AM=BF,
∵AM∥GE且AD∥BC,
∴AM=GE,
∴BF=GE;
(3)证明:①:过点B作BN∥FG,且使BN=FG,
连接NG、NE,
∴四边形NBFG是平行四边形,∴BF=NG,BF∥NG,
由(2)可知,BF⊥GE,且BF=GE,
∴NG⊥EG且NG=EG,
∴△NGE为等腰直角三角形,
由勾股定理得NE=
| 2 |
∴NE=
| 2 |
当点F与点D不重合,点E与点C不重合时,N、B、E三点不共线,
此时,在△BEN中,NB+BE>NE,即FG+BE>
| 2 |
当点F与点D重合,点E与点C重合时,N、B、E三点共线,
此时,NB+BE=NE,即FG+BE=
作业搜用户
2017-10-09
看了 (2013•房山区二模)(1...的网友还看了以下:
设函数f(x)=x^2-alnx与g(x)=(1/a)x-根号x的图像分别交直线x=1于点A,B, 2020-04-05 …
已知在直角坐标系中,直线y=-√3x 2√3与x轴、y轴分别交于点A,点B,以AB为一边的已知在直 2020-05-16 …
分别求经过直线l:3x+4y-5=0和直线l:2x-3y+8=0的交点M,且满足下列条件的直线方程 2020-05-16 …
已知直线y=ax+2/3与x,y轴分别相交于B,C两点,直线y=-2/3x+b与x轴交于A点,且这 2020-05-23 …
视线垂直与相平有什么差别?1为什么看刻度尺视线垂直,看温度计视线相平?有什么区别(别说没有,因为肯 2020-06-15 …
1直线的斜率为1/3,且与坐标轴围成面积为3的三角形,则直线方程为2直线y=1/2x关于直线x=1 2020-08-02 …
如图,已知直线Y=-1/2+m分别与x、y轴交与点C、D,与反比例函数y=6/x的图像在第一象限内 2020-08-03 …
已知直线l过点P(-3,2),且与x轴负半轴,y轴的正半轴分别交于A,B两点,设直线在x轴,y轴上的 2020-12-31 …
下面四年级语文题怎么做?1、歇后语一般由两个部分组成,前一部分像谜面,后一部分像谜底,通常只说前一部 2021-01-04 …
圆锥曲线提问已知动点P到点A(-2,0)与点B(2,0)的斜率之积为-1/4,点P的轨迹为曲线C1. 2021-01-11 …