早教吧作业答案频道 -->数学-->
已知函数f(x)=(x+1)lnx-a(x-1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.
题目详情
已知函数f(x)=(x+1)lnx-a(x-1).
(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;
(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.
(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;
(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.
▼优质解答
答案和解析
(I)当a=4时,f(x)=(x+1)lnx-4(x-1).
f(1)=0,即点为(1,0),
函数的导数f′(x)=lnx+(x+1)•
-4,
则f′(1)=ln1+2-4=2-4=-2,
即函数的切线斜率k=f′(1)=-2,
则曲线y=f(x)在(1,0)处的切线方程为y=-2(x-1)=-2x+2;
(II)∵f(x)=(x+1)lnx-a(x-1),
∴f′(x)=1+
+lnx-a,
∴f″(x)=
,
∵x>1,∴f″(x)>0,
∴f′(x)在(1,+∞)上单调递增,
∴f′(x)>f′(1)=2-a.
①a≤2,f′(x)>f′(1)≥0,
∴f(x)在(1,+∞)上单调递增,
∴f(x)>f(1)=0,满足题意;
②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,
由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.
综上所述,a≤2.
f(1)=0,即点为(1,0),
函数的导数f′(x)=lnx+(x+1)•
1 |
x |
则f′(1)=ln1+2-4=2-4=-2,
即函数的切线斜率k=f′(1)=-2,
则曲线y=f(x)在(1,0)处的切线方程为y=-2(x-1)=-2x+2;
(II)∵f(x)=(x+1)lnx-a(x-1),
∴f′(x)=1+
1 |
x |
∴f″(x)=
x-1 |
x2 |
∵x>1,∴f″(x)>0,
∴f′(x)在(1,+∞)上单调递增,
∴f′(x)>f′(1)=2-a.
①a≤2,f′(x)>f′(1)≥0,
∴f(x)在(1,+∞)上单调递增,
∴f(x)>f(1)=0,满足题意;
②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,
由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.
综上所述,a≤2.
看了 已知函数f(x)=(x+1)...的网友还看了以下:
高数一高分悬赏(适当来点步奏)1.求极限limsin3x/sin5x.2.已知函数y=sine^x 2020-04-07 …
已知函数f(x)在x=a处的导数为b,求limf(a+4△x)-f(a+5△x)/△x的值.(求大 2020-04-09 …
高中总复习函数好的来看看…已知函数f(x)=-x三次方+ax平方-4.若函数在x=4/3处取极值, 2020-05-13 …
已知函数fx=alnx-ax-3(a∈R),函数fx的图像在x=4处切线的斜率为3/2,若函数gx 2020-05-15 …
已知函数f(x)=(x∧2-3x+9/4)e∧x其中e为自然数的底数.(1)函数f(x)的图像在x 2020-06-03 …
已知函数f(x)=sin(x+&)(见补充说明)已知函数f(x)=sin(x+&)在x=π/4处取 2020-06-04 …
刚预习,有点晕,不太明白,1、如果函数f(x)=5,则f‘(1)=2、已知曲线y=x^2+1在点M 2020-07-12 …
已知函数f(x)=x^3+ax^2+bx+a^2(a,b∈R)1.若函数f(x)在x=1处有极值为 2020-07-31 …
已知函数f(x)=(x2-3x+9/4)e的x次方,其中e是自然对数的底数.已知函数f(x)=(x 2020-08-02 …
1.已知复数Z=1-i/1+i,则|Z+1|的值为.2.f(x)=2x×tanx...1.已知复数Z 2020-11-01 …