早教吧作业答案频道 -->其他-->
设函数f(x)连续且恒大于零,F(t)=∫∫∫Ω(t)f(x2+y2+z2)dv∫∫D(t)f(x2+y2)dσ,G(x)=∫∫D(t)f(x2+y2)dσ∫t−tf(x2)dx,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.(1)讨论F
题目详情
设函数f(x)连续且恒大于零,F(t)=
,G(x)=
,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.
(1)讨论F(t)在区间(0,+∞)内的单调性;
(2)证明当t>0时,F(t)>
G(t).
| ||
|
| ||
|
(1)讨论F(t)在区间(0,+∞)内的单调性;
(2)证明当t>0时,F(t)>
2 |
π |
▼优质解答
答案和解析
(1)因为F(t)=
=
,
F′(t)=2
,
显然有:
t≥0,f(t2)>0;t-r≥0,f(r2)>0;
所以:
tf(t2)
f(r2)(t-r)dr≥0.
因此:
在(0,+∞)上F'(t)≥0,
故F(t) 在(0,+∞)内单调不减.
(2)因为:
G(t)=
,
要证明t>0时
F(t)>
G(t),只需证明t>0时,
F(t)−
G(t)>0,
即
f(r2)r2dr
f(r2)dr−[
f(r2)rdr]2>0.
令 g(t)=
f(r2)r2dr
| ||||||
|
2
| ||
|
F′(t)=2
tf(t2)
| ||
[
|
显然有:
t≥0,f(t2)>0;t-r≥0,f(r2)>0;
所以:
tf(t2)
∫ | t 0 |
因此:
在(0,+∞)上F'(t)≥0,
故F(t) 在(0,+∞)内单调不减.
(2)因为:
G(t)=
π
| ||
|
要证明t>0时
F(t)>
2 |
π |
F(t)−
2 |
π |
即
∫ | t 0 |
∫ | t 0 |
∫ | t 0 |
令 g(t)=
∫ | t 0 |
看了 设函数f(x)连续且恒大于零...的网友还看了以下:
设f(x)=1/x,若f(x)+f(y)=f(z).求z..请问,这个答案中直接就写出了,f(y)= 2020-03-30 …
留数的物理意义是什么?函数f(z)=cosz/z^3,以z=0为孤立奇点,它在z=0的去心临域内的 2020-06-14 …
已知f(z)在[-1,1]连续证∫∫∫f'(z)dv=2π∫zf(z)dz三重积分区域是中心为原点 2020-06-22 …
设a是f(z)的孤立奇点,证明;若f(z)为奇函数,则Res[f(z),a]=Res[f(z),- 2020-06-26 …
设方程F(x+z,xy,z)=0确定了隐函数z=z(x,y),其中F具有连续一阶偏导数,求δz/. 2020-06-27 …
设z=z(x,y)是由方程f(x-z,y-z)=0所确定的隐函数,其中f(u,v)具有连续的偏导数 2020-07-18 …
--若f(z)=2z+z-3i,f(z+i)=6-3i,试求f(-z)?z上面有一横“-”,f(z) 2020-10-30 …
复变函数中f(z)=u(x,y)+iv(x,y)化成f(z)的形式中用的设零法是怎么证明的已知f(z 2020-10-30 …
设z=z(x,y)是由f(x-z,y-z)=0确定的隐函数,其中f有二阶连续偏导数,且f1′+f2′ 2020-11-01 …
求教几个高数问题1.求下列函数的一阶偏导数(其中f具有一阶连续偏导数)①u=f(x^2-y^2,e^ 2020-11-01 …