早教吧作业答案频道 -->其他-->
若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).(1)求f(log2x)的最小值及对应的x值;(2)x取何值时,f(log2x)>f(1)且log2[f(x)]<f(1)?
题目详情
若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).
(1)求f(log2x)的最小值及对应的x值;
(2)x取何值时,f(log2x)>f(1)且log2[f(x)]<f(1)?
(1)求f(log2x)的最小值及对应的x值;
(2)x取何值时,f(log2x)>f(1)且log2[f(x)]<f(1)?
▼优质解答
答案和解析
(1)∵f(x)=x2-x+b,∴f(log2a)=log22a-log2a+b.
由已知有log22a-log2a+b=b,∴(log2a-1)log2a=0.(3分)
∵a≠1,∴log2a=1.∴a=2.(5分)
又log2[f(a)]=2,∴f(a)=4.
∴a2-a+b=4,b=4-a2+a=2.(8分)
故f(x)=x2-x+2,从而f(log2x)=log22x-log2x+2=(log2x-
)2+
.
∴当log2x=
即x=
时,f(log2x)有最小值
.(12分)
(2)由题意
⇒
⇒0<x<1.(16分)
由已知有log22a-log2a+b=b,∴(log2a-1)log2a=0.(3分)
∵a≠1,∴log2a=1.∴a=2.(5分)
又log2[f(a)]=2,∴f(a)=4.
∴a2-a+b=4,b=4-a2+a=2.(8分)
故f(x)=x2-x+2,从而f(log2x)=log22x-log2x+2=(log2x-
| 1 |
| 2 |
| 7 |
| 4 |
∴当log2x=
| 1 |
| 2 |
| 2 |
| 7 |
| 4 |
(2)由题意
|
|
看了 若f(x)=x2-x+b,且...的网友还看了以下:
1、已知函数f(x)=ax2+2ax+4(a>0),若x1<x2,x1+x2=0,则()a.f(x 2020-04-25 …
f(x)=x^2+ax+b(1)函数f(x)的图像过(1,1),f(-1)=f(3),求g(x)= 2020-05-16 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
设f(x)具有二阶连续导数,且f′(0)=0,limx→0f″(x)|x|=1,则()A.f(0) 2020-06-18 …
关于拉格朗日中值定理两个前提条件:f(x)在[a,b]上连续,在(a,b)上可导.若[a,b]换成 2020-06-22 …
设c小于0,f(x)是区间a,b上的减函数,下列命题正确的是()A.f(x)在区间a,b上有最小值 2020-07-14 …
高数求极限问题1、确定常数a和b的值x→+无穷lim[(x^2-x+1)^1/2-ax-b]=02 2020-07-26 …
设f(x)在x0∈(a,b)处可导,且f′(x0)>0,则在下列结论正确的一个是()A.f(x)在 2020-07-31 …
定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=f 2020-12-31 …