早教吧作业答案频道 -->数学-->
某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)13610…日销售量(m
题目详情
某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
(1)求m关于x的一次函数表达式;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格-每件成本)】
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:
时间(第x天) | 1 | 3 | 6 | 10 | … |
日销售量(m件) | 198 | 194 | 188 | 180 | … |
时间(第x天) | 1≤x<50 | 50≤x≤90 |
销售价格(元/件) | x+60 | 100 |
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格-每件成本)】
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
▼优质解答
答案和解析
(1)∵m与x成一次函数,
∴设m=kx+b,将x=1,m=198,x=3,m=194代入,得:
,
解得:
.
所以m关于x的一次函数表达式为m=-2x+200;
(2)设销售该产品每天利润为y元,y关于x的函数表达式为:
,
当1≤x<50时,y=-2x2+160x+4000=-2(x-40)2+7200,
∵-2<0,
∴当x=40时,y有最大值,最大值是7200;
当50≤x≤90时,y=-120x+12000,
∵-120<0,
∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;
综上所述,当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;
(3)在该产品销售的过程中,共有46天销售利润不低于5400元.
∴设m=kx+b,将x=1,m=198,x=3,m=194代入,得:
|
解得:
|
所以m关于x的一次函数表达式为m=-2x+200;
(2)设销售该产品每天利润为y元,y关于x的函数表达式为:
|
当1≤x<50时,y=-2x2+160x+4000=-2(x-40)2+7200,
∵-2<0,
∴当x=40时,y有最大值,最大值是7200;
当50≤x≤90时,y=-120x+12000,
∵-120<0,
∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;
综上所述,当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;
(3)在该产品销售的过程中,共有46天销售利润不低于5400元.
看了 某公司生产的某种产品每件成本...的网友还看了以下:
点PM(M,N)满足2M+N=0,点AM(M,B)满足2M+B=1(1)请写出点P0,P1,P2, 2020-05-17 …
已知数列{an}中,a1=1,且满足递推关系an+1=2a2n+3an+man+1(m∈N*)(1 2020-06-14 …
昨天卖出48个足球,今天比昨天多卖出m个,今天卖出足球个.当m=10时,今天卖出个.当m=时,今天 2020-07-17 …
如图,点A(3,2)和点M(m,n)都在反比例函数y=kx(x>0)的图象上.(1)求k的值,并求 2020-08-01 …
已知幂函数y=x(㎡-2m+3)(m∈N﹡)的图像关于y轴对称,且在(0,+∞)上是减函数,求满足 2020-08-01 …
已知数列{an}中,a1=1,且满足递推关系an+1=2a2n+3an+man+1(m∈N*)(1 2020-08-01 …
对于函数y=f(x),如果存在区间[m,n],同时满足下列条件:①f(x)在[m,n]内是单调的对 2020-08-02 …
已知命题p:实数x满足x2-2x-8≤0;命题q:实数x满足|x-2|≤m(m>0).(1)当m=3 2020-12-07 …
设非空集合S={x|m≤x≤l}满足:当x∈S时,有x²∈S.若m=1,则S={1}解析:当m=1时 2020-12-07 …
如图所示匀强电场宽度为l,场强大小为E、方向竖直向下且有足够长度。现有一质量为m,电量为q的正电荷以 2021-01-02 …