早教吧作业答案频道 -->其他-->
设f(x)为连续函数,(1)求初值问题y′+ay=f(x)y|x=0=0的解f(x),其中a是正常数;(2)若|f(x)|≤k(k为常数),证明:当x≥0时,有|y(x)|≤ka(1−e−ax).
题目详情
设f(x)为连续函数,
(1)求初值问题
的解f(x),其中a是正常数;
(2)若|f(x)|≤k(k为常数),证明:当x≥0时,有|y(x)|≤
(1−e−ax).
(1)求初值问题
|
(2)若|f(x)|≤k(k为常数),证明:当x≥0时,有|y(x)|≤
k |
a |
▼优质解答
答案和解析
(1)【解法一】
因为一阶微分方程 y′+P(x)y=Q(x) 的通解公式为
y=e-∫p(x)dx(∫Q(x)e∫p(x)dxdx+C),
所以 y′+ay=f(x) 的通解为
y=e-∫adx(∫f(x)e∫adxdx+C)=e-ax (∫f(x)eaxdx+C)=e-ax (F(x)+C),
其中,F(x) 是 f(x)eax 的任一原函数.
由 y(0)=0 可得,C=-F(0).
所以 y(x)=e-ax (F(x)-F(0))=e-ax
f(t)eatdt.
【解法二】
在方程 y′+ay=f(x) 两边同时乘以 eax,可得
eaxy′+aeax y=eaxf(x),
即 (eax y)′=eaxf(x).
两边积分可得,
eaxy =
eatf(t)dt,
即:y(x)=e-ax
f(t)eatdt.
(2)|y(x)|=e-ax|
f(t)eatdt |
≤e-ax
|f(t)|eatdt
≤ke-ax
eatdt(∵|f(x)|≤k)
≤
e-ax(eax-1)
≤
(1-e-ax).
因为一阶微分方程 y′+P(x)y=Q(x) 的通解公式为
y=e-∫p(x)dx(∫Q(x)e∫p(x)dxdx+C),
所以 y′+ay=f(x) 的通解为
y=e-∫adx(∫f(x)e∫adxdx+C)=e-ax (∫f(x)eaxdx+C)=e-ax (F(x)+C),
其中,F(x) 是 f(x)eax 的任一原函数.
由 y(0)=0 可得,C=-F(0).
所以 y(x)=e-ax (F(x)-F(0))=e-ax
∫ | x 0 |
【解法二】
在方程 y′+ay=f(x) 两边同时乘以 eax,可得
eaxy′+aeax y=eaxf(x),
即 (eax y)′=eaxf(x).
两边积分可得,
eaxy =
∫ | x 0 |
即:y(x)=e-ax
∫ | x 0 |
(2)|y(x)|=e-ax|
∫ | x 0 |
≤e-ax
∫ | x 0 |
≤ke-ax
∫ | x 0 |
≤
k |
a |
≤
k |
a |
看了 设f(x)为连续函数,(1)...的网友还看了以下:
一、·...1÷9=0.12÷9=0.23÷9=0.34÷9=0.4观察上面的结果,你发现了什么? 2020-04-09 …
1如果一个数的平方根是6-X与2X+15,那么这个数是多少?2已知:|3X+2Y|+5倍的根号下2 2020-05-13 …
1、设随机变量ξ满足P(ξ=1)=P,P(ξ=0)=1-P,求Eξ和Dξ2、设随机变量ξ满足P(ξ 2020-05-15 …
1:已知f(x)为二次函数,不等式f(x)+2<0的解集为(-1,1/3),且f(1)=0.(1) 2020-06-03 …
快来拿分设f(x)=ax^2+bx+c(a>b>c,a不为0),且f(1)=0,g(x)=ax+b 2020-06-05 …
高中数学已知函数∫(x)=ax平方 bx c已知函数∫(x)=ax平方 bx c(a大于0,bc属 2020-06-27 …
∫∫f(x,y)dxdy,其中f(x,y)=min(x,y),D由x=0,x=1,y=0,y=1所 2020-07-26 …
0x=0应该也是方程啊,是无穷解的啊…………我只是觉得应该把1/a+1/b+1/c=0的情况推翻或 2020-07-29 …
求解两道二重积分求体积的题?1.利用二重积分,计算由曲面X+2Y+3Z=1,X=0,Y=0,Z=0所 2020-11-01 …
(2012•眉山一模)已知正项数列{an}满足a1=1,a2n+1−a2n−2an+1−2an=0( 2020-11-12 …