早教吧作业答案频道 -->其他-->
设f(x)为连续函数,(1)求初值问题y′+ay=f(x)y|x=0=0的解f(x),其中a是正常数;(2)若|f(x)|≤k(k为常数),证明:当x≥0时,有|y(x)|≤ka(1−e−ax).
题目详情
设f(x)为连续函数,
(1)求初值问题
的解f(x),其中a是正常数;
(2)若|f(x)|≤k(k为常数),证明:当x≥0时,有|y(x)|≤
(1−e−ax).
(1)求初值问题
|
(2)若|f(x)|≤k(k为常数),证明:当x≥0时,有|y(x)|≤
k |
a |
▼优质解答
答案和解析
(1)【解法一】
因为一阶微分方程 y′+P(x)y=Q(x) 的通解公式为
y=e-∫p(x)dx(∫Q(x)e∫p(x)dxdx+C),
所以 y′+ay=f(x) 的通解为
y=e-∫adx(∫f(x)e∫adxdx+C)=e-ax (∫f(x)eaxdx+C)=e-ax (F(x)+C),
其中,F(x) 是 f(x)eax 的任一原函数.
由 y(0)=0 可得,C=-F(0).
所以 y(x)=e-ax (F(x)-F(0))=e-ax
f(t)eatdt.
【解法二】
在方程 y′+ay=f(x) 两边同时乘以 eax,可得
eaxy′+aeax y=eaxf(x),
即 (eax y)′=eaxf(x).
两边积分可得,
eaxy =
eatf(t)dt,
即:y(x)=e-ax
f(t)eatdt.
(2)|y(x)|=e-ax|
f(t)eatdt |
≤e-ax
|f(t)|eatdt
≤ke-ax
eatdt(∵|f(x)|≤k)
≤
e-ax(eax-1)
≤
(1-e-ax).
因为一阶微分方程 y′+P(x)y=Q(x) 的通解公式为
y=e-∫p(x)dx(∫Q(x)e∫p(x)dxdx+C),
所以 y′+ay=f(x) 的通解为
y=e-∫adx(∫f(x)e∫adxdx+C)=e-ax (∫f(x)eaxdx+C)=e-ax (F(x)+C),
其中,F(x) 是 f(x)eax 的任一原函数.
由 y(0)=0 可得,C=-F(0).
所以 y(x)=e-ax (F(x)-F(0))=e-ax
∫ | x 0 |
【解法二】
在方程 y′+ay=f(x) 两边同时乘以 eax,可得
eaxy′+aeax y=eaxf(x),
即 (eax y)′=eaxf(x).
两边积分可得,
eaxy =
∫ | x 0 |
即:y(x)=e-ax
∫ | x 0 |
(2)|y(x)|=e-ax|
∫ | x 0 |
≤e-ax
∫ | x 0 |
≤ke-ax
∫ | x 0 |
≤
k |
a |
≤
k |
a |
看了 设f(x)为连续函数,(1)...的网友还看了以下:
A-F为初中化学常见的六种物质,且都含有一种相同元素,他们相互间的关系如图所示.已知A、B、C、D 2020-05-17 …
A.(C, B, D, A, F, E, I, J, G, H)B.(C, B, D, A, E, 2020-05-26 …
A-F为初中化学常见的六种物质,且都含有一种相同元素,它们相互间的关系如图所示.已知A、B、C、D 2020-07-21 …
A-F为初中化学中常见的六种物质,其中B能供给呼吸,C常温下是液体,D是黑色固体,E溶液呈蓝色,它 2020-07-25 …
A-F是初中化学中常见的六种物质,其中B、C组成元素相同,C、D、E、F是不同类别的化合物,D和E 2020-07-25 …
如图,已知抛物线与x轴相交于A,B两点,与y轴相交于点C(0,-3),且顶点D的坐标为(1,-4) 2020-08-01 …
EXCEL循环或计算问题。F=A+B+C+D+E。(A.B.C.D.E.F.均要大于零)E=A*10 2020-11-01 …
丹霞地貌的形成过程正确的是()A.c→b→d→a→f→eB.b→a→c→d→f→eC.a→h→c→d 2020-11-21 …
已知A-F为初中常见物质,D为大理石主要成分,E是工业上常用来制玻璃、造纸、洗涤剂的原料,部分反应为 2020-12-06 …
A-F是初中化学常见的物质,它们的相互转化关系如图所示,已知A,B组成元素相同,E是天然气的主要成分 2021-01-22 …