已知函数f(x)=2lnx-ax.(1)若曲线f(x)在点(1,f(1))处的切线过点(2,0),求a的值;(2)求f(x)的单调区间;(3)如果x1,x2(x1<x2)是函数f(x)的两个零点,f′(x)为f(x)
已知函数f(x)=2lnx-ax.
(1)若曲线f(x)在点(1,f(1))处的切线过点(2,0),求a的值;
(2)求f(x)的单调区间;
(3)如果x1,x2(x1<x2)是函数f(x)的两个零点,f′(x)为f(x)的导数,证明:f′()<0.
答案和解析
(1)∵f(x)=2lnx-ax,(x>0);
∴f′(x)=
-a,∴f′(1)=2-a;
又∵f(1)=-a,
∴曲线在点(1,f(1))处的切线方程为
y-(-a)=(2-a)(x-1),
即y+a=(2-a)(x-1);
又切线过点(2,0),
∴0+a=(2-a)(2-1),解得a=1;
(2)由(1)知,f′(x)=-a,(x>0),
①当a≤0时,f′(x)>0恒成立,函数f(x)在(0,+∞)上是增函数;
②当a>0时,令f′(x)>0,得x∈(0,),∴f(x)在(0,)上是增函数,
令f′(x)<0,得x∈(,+∞),∴f(x)在(,+∞)上是减函数;
∴当a≤0时,函数f(x)的单调增区间是(0,+∞),
当a>0时,函数f(x)的单调增区间是(0,),单调减区间是(,+∞);
(3)由题意知,
f(x1)=0,f(x2)=0,
即;
则2lnx2-2lnx1=a(x2-x1),∴a=;
又∵f′(x)=−a,
∴f′()=-a=-;
要使f′()<0,只要-<0(*);
∵x2>x1>0,∴x2-x1>0,x1+2x2>0,
(*)式可化为-ln<0,
∴-ln<0,
令t=,则t>1,构造函数h(t)=-lnt,
则h′(t)=-=-,
显然t>1时,h′(t)<0,即h(t)在[1,+∞)上是减函数,
∴h(t)<h(1)=0,即证f′()<0.
抛物线的顶点在直线上,过点F(-2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥ 2020-05-13 …
如图四、已知数轴上A、B、C、D四点,对应的实数都是整数,如果A对应的实数为a、B为b、且b-2a 2020-05-15 …
如图,在直线坐标系中,直线y=-4/3x+4与y轴,x轴分别交于A,B两点,且AB=5.点C的坐标 2020-05-16 …
在直角坐标平面中,已知点P1(1,2),P2(2,2^2),……,Pn(n,2^n),其中n是正整 2020-05-17 …
求教关于复变函数聚点的定义聚点:如果点z的任何邻域中都含有平面点集E中无穷多个点,则称z为E的聚点 2020-06-02 …
设向量a=(x+1,y),b=(x-1,y),点P(x,y)为动点设向量a=(x+1,y),b=( 2020-06-03 …
已知,抛物线y=-(x-1)^2+4的顶点为A,与x轴相交于B、C两点,直线y=-2x+6经过A、 2020-06-14 …
如图直线y=-1/3x+1分别交x轴y轴于A、B两点,三角形AOB绕点O按逆时针方向旋转90度、直 2020-06-15 …
数轴上P1、P2两点分别表示-1与1,一个电子跳蚤由原点O开始先跳至点O与点P1的中点P3处,再由 2020-06-27 …
在a处有一生产电场的点电荷Q=8×10^(-8)C,离a点2cm处的b点有一点电荷q=1×10^( 2020-07-12 …