早教吧作业答案频道 -->数学-->
已知函数f(x)=ax2-lnx(a为常数).(1)当a=12时,求f(x)的单调递减区间;(2)若a<0,且对任意的.x∈[1,e],f(x)≥(a-2)x恒成立,求实数a的取值范围.
题目详情
已知函数f(x)=ax2-lnx(a为常数).
(1)当a=
时,求f(x)的单调递减区间;
(2)若a<0,且对任意的.x∈[1,e],f(x)≥(a-2)x恒成立,求实数a的取值范围.
(1)当a=
1 |
2 |
(2)若a<0,且对任意的.x∈[1,e],f(x)≥(a-2)x恒成立,求实数a的取值范围.
▼优质解答
答案和解析
(1)对于函数y=
x2-lnx,易得其定义域为{x|x>0},
y′=x-
=
,
令
≤0,
又由x>0,则
≤0⇔x2-1≤0,且x>0;
解可得0<x≤1,
即函数y=
x2-lnx的单调递减区间为(0,1],
(2)由已知得x∈[1,e]时,f(x)≥(a-2)x恒成立,即x∈[1,e]时,ax2-lnx-(a-2)x≥0恒成立.
即a≥
,
设g(x)=
,g′(x)=
,
当x>1时,g'(x)>0,
∴g(x)在区间(1,+∞)上递增,
∴当x∈[1,e]时,g(x)≤g(e)=
,
故若a<0,且对任意的.x∈[1,e],f(x)≥(a-2)x恒成立,实数a的取值范围为a≥
.
1 |
2 |
y′=x-
1 |
x |
x2−1 |
x |
令
x2−1 |
x |
又由x>0,则
x2−1 |
x |
解可得0<x≤1,
即函数y=
1 |
2 |
(2)由已知得x∈[1,e]时,f(x)≥(a-2)x恒成立,即x∈[1,e]时,ax2-lnx-(a-2)x≥0恒成立.
即a≥
lnx−2x |
x2−x |
设g(x)=
lnx−2x |
x2−x |
(
| ||
(x2−x)2 |
当x>1时,g'(x)>0,
∴g(x)在区间(1,+∞)上递增,
∴当x∈[1,e]时,g(x)≤g(e)=
1−2e |
e2−e |
故若a<0,且对任意的.x∈[1,e],f(x)≥(a-2)x恒成立,实数a的取值范围为a≥
1−2e |
e2−e |
看了 已知函数f(x)=ax2-l...的网友还看了以下:
高一二次函数求值设二次函数f(x)满足下列条件:1,当X属于R时,f(x)的最小值为0,且f(x- 2020-05-21 …
不等式问题x,y,z∈R+,且x+y+z=z.试证明x,y,z∈R+,且x+y+z=z.试证明:对 2020-06-14 …
已知函数f(x)=-x2+ax+b2-b+1,(a,b∈R)对任意实数x都有f(1-x)=f(1+ 2020-06-27 …
已知函数f(x)=9x-m•3x+m+1对x∈(0,+∞)的图象恒在x轴上方,则m的取值范围是() 2020-06-27 …
在下列5个函数中:1.y=2^x;2.y=log以2为底以x为真数:3.y=x^2;4.y=x^- 2020-07-30 …
在下列5个函数中:1.y=2^x;2.y=log以2为底以x为真数:3.y=x^2;4.y=x^- 2020-07-30 …
下列命题(为虚数单位)中正确的是①a,b∈R,若a>b,则a+i>b+i;②当z是非零实数时,|z 2020-07-30 …
在y=2^x,y=log2x(2是底数),y=x^2,y=cos2x,这4个函数中,当0<x1<x2 2020-10-31 …
不等式三个问题1.对于任意实数x,不等式(a-2)x^2-2(a-x)-4<0恒成立,则实数a的取值 2020-11-01 …
在y=(1/2)的x次方,y=log2x,y=x2这三个函数中,当0<x1<x2<1时,使f(括号里 2020-12-08 …