早教吧作业答案频道 -->数学-->
如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.
题目详情

▼优质解答
答案和解析
证明:(1)∵四边形ABCD是矩形,
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
AD,CN=
BC,
∴AM=CN,
在△MAB和△NDC中,
∵
,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 1 12 2 2AD,CN=
BC,
∴AM=CN,
在△MAB和△NDC中,
∵
,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 1 12 2 2BC,
∴AM=CN,
在△MAB和△NDC中,
∵
,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
AB=CD AB=CD AB=CD∠A=∠C=90° ∠A=∠C=90° ∠A=∠C=90°AM=CN AM=CN AM=CN ,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
DM=BN DM=BN DM=BNDQ=BP DQ=BP DQ=BP∠MDQ=∠NBP ∠MDQ=∠NBP ∠MDQ=∠NBP ,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 1 12 2 2AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 1 12 2 2BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 1 12 2 2BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
1 |
2 |
1 |
2 |
∴AM=CN,
在△MAB和△NDC中,
∵
|
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,

则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
1 |
2 |
∴AM=CN,
在△MAB和△NDC中,
∵
|
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,

则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
∴AM=CN,
在△MAB和△NDC中,
∵
|
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,

则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
|
AB=CD |
∠A=∠C=90° |
AM=CN |
AB=CD |
∠A=∠C=90° |
AM=CN |
AB=CD |
∠A=∠C=90° |
AM=CN |
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,

则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
|
DM=BN |
DQ=BP |
∠MDQ=∠NBP |
DM=BN |
DQ=BP |
∠MDQ=∠NBP |
DM=BN |
DQ=BP |
∠MDQ=∠NBP |
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
看了 如图,在矩形ABCD中,M、...的网友还看了以下:
比如30分解质因数,30除以2等于15,15还是合数,15除以3等于5,5是质数30=2x3x54 2020-04-11 …
比如30分解质因数,30除以2等于15,15还是合数,15除以3等于5,5是质数30=2x3x54 2020-04-11 …
为什么碳酸钠的电荷守恒方程式中碳酸根的系数是2c(Na+)+c(H+)=2c(CO32-)+c(H 2020-05-13 …
碳酸根离子为什么是2-是不是CO3中C的化合价不用理他,直接看后面的O的2-就行 2020-05-22 …
关于求映射个数的原理集合M的元素个数m,集合N的元素个数n,那么从M到N的映射个数是n的m次幂.这 2020-06-14 …
丁烷的化学方程式(C4H10)H是正一价那么C是正几价?根据配平的话那么C是-2.5价.我知道不可 2020-06-14 …
为什么1摩尔碳化硅的si-c键是4摩尔,1摩尔的金刚石的c-c是2摩尔?这到底是为什么呀?它们都是 2020-06-16 …
数码乘以各自的权的累加是什么意思?书上说(10001)B=2的4次方+2的0次方=16+1=17, 2020-06-17 …
乙醇为什么是2个C,乙醚为什么是4个C? 2020-07-29 …
幂集的个数为什么是2的幂次方,这个我知道,能证明一下2^n=C(n,0)+C(n,1)+C(n,2 2020-07-29 …