早教吧 育儿知识 作业答案 考试题库 百科 知识分享

一道数学题,据说只有智商超过150的人才能做出来8个老师分别教8个班,考试时,8个老师不能再自己教的班监考。问:有多少种分配方法N个老师分别教N个班,考试时,N个老师不能再自己教

题目详情
一道数学题,据说只有智商超过150的人才能做出来
8个老师分别教8个班,考试时,8个老师不能再自己教的班监考。问:有多少种分配方法
N个老师分别教N个班,考试时,N个老师不能再自己教的班监考。求:通项公式
公式我知道,求证明
▼优质解答
答案和解析
设N的通项是P(N)
那么P(N)=(N-1)[(N-1)P(N-2)+(N-2)P(N-3)], N≥4
其中:
①N=1时: 0种
②N=2时: 1种
③N=3时: 2种
计算得到:P(8)=14833
递推式证明如下:
假设有N个老师,以其中一个老师a开始,他要教不同的班级,那么有N-1种选择
在这之后,不妨假设他选了一个老师b,那么接下来分成两种可能讨论:
①假如b选择a教的班级,那么余下的N-2个老师有P(N-2)种监考方式
②假如b没有选择a教的班级,那么余下的N-2个老师可能选择a教的班级,假设为c
b和剩余的N-3个老师进行监考调配,又分为两种情况:
1. b选择c,那么有P(N-3)
2. b不选择c,那么有P(N-2)
综合以上,可以得到递推式:P(N)={P(N-2)+(N-2)[P(N-2)+P(N-3)]}
化简得到:P(N)=(N-1)[(N-1)P(N-2)+(N-2)P(N-3)], N≥4
看了 一道数学题,据说只有智商超过...的网友还看了以下: