早教吧作业答案频道 -->数学-->
已知正四棱锥底面边长为2,侧棱长为√5,求底面与侧面所成二面角顺便再问一个:若A、B两点的坐标分别是A(3cosθ,3sinθ,1),B(2cosα,2sinα,1),则|向量AB|的取值范围是?
题目详情
已知正四棱锥底面边长为2,侧棱长为√5,求底面与侧面所成二面角
顺便再问一个:若A、B两点的坐标分别是A(3cosθ,3sinθ,1),B(2cosα,2sinα,1),则|向量AB|的取值范围是?
顺便再问一个:若A、B两点的坐标分别是A(3cosθ,3sinθ,1),B(2cosα,2sinα,1),则|向量AB|的取值范围是?
▼优质解答
答案和解析
解析:
1、如图示,
取AC中点E、BD中点F,连接PE、PF、EF,
∵是正四棱锥,
∴PA=PB=PC=PD,
∵E、F分别是AC、BD中点,
∴PE⊥AC,PF⊥BD,
且 有 EF‖AB‖CD,EF=AB=CD=2,
∴EF⊥AC,
由二面角定义可知,∠PEF大小即为底面与侧面所成二面角的大小.
∵在△PAC中,PA=PC=√5,AC=2,
∴PE=2,
∴PF=PE=2,
又∵EF=2,
∴在△PEF中,有PE=PF=EF,
∴∠PEF=60°,
即 底面与侧面形成的二面角的大小为60°.
2、向量AB=(2cosα,2sinα,1)-(3cosθ,3sinθ,1)
=(2cosα-3cosθ,2sinα-3sinθ,0)
∴| 向量AB | = √(2cosα-3cosθ)²+(2sinα-3sinθ)²+(0)²
=√[ (4cos²α+9cos²θ-12cosαcosθ)+(4sin²α+9sin²θ-12sinαsinθ) ]
=√ [ 4+9-12(cosαcosθ+sinαsinθ) ]
=√ [ 13-12cos(α-θ) ]
∵cos(α-θ)的范围是 [-1,1]
∴12cos(α-θ)的范围是 [-12,12]
∴13-12cos(α-θ) 的范围是 [1,25]
∴√ [ 13-12cos(α-θ) ]的范围是 [1,5]
即 | 向量AB | 的取值范围是 [1,5] .
希望可以帮到你、
1、如图示,
取AC中点E、BD中点F,连接PE、PF、EF,
∵是正四棱锥,
∴PA=PB=PC=PD,
∵E、F分别是AC、BD中点,
∴PE⊥AC,PF⊥BD,
且 有 EF‖AB‖CD,EF=AB=CD=2,
∴EF⊥AC,
由二面角定义可知,∠PEF大小即为底面与侧面所成二面角的大小.
∵在△PAC中,PA=PC=√5,AC=2,
∴PE=2,
∴PF=PE=2,
又∵EF=2,
∴在△PEF中,有PE=PF=EF,
∴∠PEF=60°,
即 底面与侧面形成的二面角的大小为60°.
2、向量AB=(2cosα,2sinα,1)-(3cosθ,3sinθ,1)
=(2cosα-3cosθ,2sinα-3sinθ,0)
∴| 向量AB | = √(2cosα-3cosθ)²+(2sinα-3sinθ)²+(0)²
=√[ (4cos²α+9cos²θ-12cosαcosθ)+(4sin²α+9sin²θ-12sinαsinθ) ]
=√ [ 4+9-12(cosαcosθ+sinαsinθ) ]
=√ [ 13-12cos(α-θ) ]
∵cos(α-θ)的范围是 [-1,1]
∴12cos(α-θ)的范围是 [-12,12]
∴13-12cos(α-θ) 的范围是 [1,25]
∴√ [ 13-12cos(α-θ) ]的范围是 [1,5]
即 | 向量AB | 的取值范围是 [1,5] .
希望可以帮到你、

看了 已知正四棱锥底面边长为2,侧...的网友还看了以下:
一张菱形硬纸板ABCD的中心是点O,沿它的一条对角线AC对折,使BO垂直于DO,这时二面角B-AC- 2020-03-30 …
如图,在几何体P-ABCD中,ABCD为矩形,PA垂直面ABCD,AB=PA=21求证:当AB=2 2020-04-12 …
不能肯定两个平面一定垂直的情况是A.两个平面相交,所成二面角是直二面角B.一个平面经过另一个平面的 2020-05-13 …
(2014•杭州二模)在直三棱柱ABC-A′B′C′中,AB⊥AC,D,E分别是BC,A′B′的中 2020-05-14 …
如图,ABCD是正方形,PA⊥平面ABCD,且PA=AB=a.则二面角B-PC-D的度数为作BE⊥ 2020-05-16 …
如图,平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且 ,G是EF的中点.求二面角 2020-05-16 …
正方体ABCD-A1B1C1D1,棱长为1、,点F是A1D中点.1.证明:A1B平行面AFC2.求 2020-06-21 …
立体几何三棱锥问题沿对角线AC将正方形ABCD折成三棱锥B—ACD.使二面角B—AC—D为直二面角 2020-06-21 …
△ABC中,AB=4,AC=42,∠BAC=45°,以AC的中线BD为折痕,将△ABD沿BD折起, 2020-06-27 …
将边长为2的正三角形ABC沿高AD折成直二面角B―AD―C,则三棱锥B―ACD的外接球表面积是?. 2020-07-31 …