早教吧作业答案频道 -->数学-->
如图,在△ABC中,∠ACB=90°,BC的垂直平分线交BC于D,交AB于点E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的
题目详情
如图,在△ABC中,∠ACB=90°,BC的垂直平分线交BC于D,交AB于点E,F在DE上,并且AF=CE.

(1)求证:四边形ACEF是平行四边形;
(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的结论;
(3)四边形ACEF有可能是矩形吗?为什么?

(1)求证:四边形ACEF是平行四边形;
(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的结论;
(3)四边形ACEF有可能是矩形吗?为什么?
▼优质解答
答案和解析
(1)证明:∵ED是BC的垂直平分线,
∴EB=EC.
∴∠3=∠4.
∵∠ACB=90°,
∴∠2与∠4互余,∠1与∠3互余,
∴∠1=∠2.
∴AE=CE.
又∵AF=CE,
∴△ACE和△EFA都是等腰三角形.
∴AF=AE,
∴∠F=∠5,
∵FD⊥BC,AC⊥BC,
∴AC∥FE.
∴∠1=∠5.
∴∠1=∠2=∠F=∠5,
∴∠AEC=∠EAF.
∴AF∥CE.
∴四边形ACEF是平行四边形.
(2)当∠B=30°时,四边形ACEF是菱形.证明如下:
∵∠B=30°,∠ACB=90°,
∴∠1=∠2=60°.
∴△EAC为等边三角形,
∴AC=EC.
∴平行四边形ACEF是菱形.
(3)四边形ACEF不可能是矩形.理由如下:
由(1)可知,∠2与∠3互余,
∠3≠0°,∴∠2≠90°.
∴四边形ACEF不可能是矩形.
∴EB=EC.
∴∠3=∠4.
∵∠ACB=90°,
∴∠2与∠4互余,∠1与∠3互余,
∴∠1=∠2.
∴AE=CE.
又∵AF=CE,
∴△ACE和△EFA都是等腰三角形.
∴AF=AE,
∴∠F=∠5,

∵FD⊥BC,AC⊥BC,
∴AC∥FE.
∴∠1=∠5.
∴∠1=∠2=∠F=∠5,
∴∠AEC=∠EAF.
∴AF∥CE.
∴四边形ACEF是平行四边形.
(2)当∠B=30°时,四边形ACEF是菱形.证明如下:
∵∠B=30°,∠ACB=90°,
∴∠1=∠2=60°.
∴△EAC为等边三角形,
∴AC=EC.
∴平行四边形ACEF是菱形.
(3)四边形ACEF不可能是矩形.理由如下:
由(1)可知,∠2与∠3互余,
∠3≠0°,∴∠2≠90°.
∴四边形ACEF不可能是矩形.
看了 如图,在△ABC中,∠ACB...的网友还看了以下:
根据意思在文中找词语填这横线上。1:形容在极短的时间内变化繁多。2:隐隐约约、若有若无的样子。 2020-05-15 …
如图,在平行四边形abcd中,点e是ab边上的中点,de与cb的延长线交于点f 1如图,在平行四边 2020-05-16 …
下图的正方形网格,每个正方形定点交格点,每个正方形的边长为1.(1)请在图上画出线段AB=根号2( 2020-05-16 …
在正方体ABCD-A1B1C1D1中,过对角线BD1的一个平面交AA1于E,交CC1于F,则:1、 2020-06-06 …
如图,在平面直角坐标系中,有平行四边形ABCD,且A(-1,0),B(0,3),C(3,0),BD 2020-06-13 …
(1/2)椭圆x2/2+y2=1与直线y=-x+1相交A.B两点,现有一经过A点的直线并交椭C点. 2020-06-21 …
(1/2)椭圆x2/2+y2=1与直线y=-x+1相交A.B两点,现有一经过A点的直线并交椭C点. 2020-06-21 …
(2013•徐汇区二模)如图,四边形ABCD是平行四边形,在边AB的延长线上截取BE=AB,点F在 2020-07-07 …
先把成语补充完整,再按要求选词填空.()()人口()笔()花()()共赏巧()天()引人()()独( 2020-11-02 …
函数问题,数形结合设k>1,f(x)=k(x-1)(x∈R)在平面直角坐标系xOy中,函数y=f(x 2020-12-25 …