早教吧作业答案频道 -->数学-->
如图,在△ABC中,∠ACB=90°,BC的垂直平分线交BC于D,交AB于点E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的
题目详情
如图,在△ABC中,∠ACB=90°,BC的垂直平分线交BC于D,交AB于点E,F在DE上,并且AF=CE.

(1)求证:四边形ACEF是平行四边形;
(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的结论;
(3)四边形ACEF有可能是矩形吗?为什么?

(1)求证:四边形ACEF是平行四边形;
(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的结论;
(3)四边形ACEF有可能是矩形吗?为什么?
▼优质解答
答案和解析
(1)证明:∵ED是BC的垂直平分线,
∴EB=EC.
∴∠3=∠4.
∵∠ACB=90°,
∴∠2与∠4互余,∠1与∠3互余,
∴∠1=∠2.
∴AE=CE.
又∵AF=CE,
∴△ACE和△EFA都是等腰三角形.
∴AF=AE,
∴∠F=∠5,
∵FD⊥BC,AC⊥BC,
∴AC∥FE.
∴∠1=∠5.
∴∠1=∠2=∠F=∠5,
∴∠AEC=∠EAF.
∴AF∥CE.
∴四边形ACEF是平行四边形.
(2)当∠B=30°时,四边形ACEF是菱形.证明如下:
∵∠B=30°,∠ACB=90°,
∴∠1=∠2=60°.
∴△EAC为等边三角形,
∴AC=EC.
∴平行四边形ACEF是菱形.
(3)四边形ACEF不可能是矩形.理由如下:
由(1)可知,∠2与∠3互余,
∠3≠0°,∴∠2≠90°.
∴四边形ACEF不可能是矩形.
∴EB=EC.
∴∠3=∠4.
∵∠ACB=90°,
∴∠2与∠4互余,∠1与∠3互余,
∴∠1=∠2.
∴AE=CE.
又∵AF=CE,
∴△ACE和△EFA都是等腰三角形.
∴AF=AE,
∴∠F=∠5,

∵FD⊥BC,AC⊥BC,
∴AC∥FE.
∴∠1=∠5.
∴∠1=∠2=∠F=∠5,
∴∠AEC=∠EAF.
∴AF∥CE.
∴四边形ACEF是平行四边形.
(2)当∠B=30°时,四边形ACEF是菱形.证明如下:
∵∠B=30°,∠ACB=90°,
∴∠1=∠2=60°.
∴△EAC为等边三角形,
∴AC=EC.
∴平行四边形ACEF是菱形.
(3)四边形ACEF不可能是矩形.理由如下:
由(1)可知,∠2与∠3互余,
∠3≠0°,∴∠2≠90°.
∴四边形ACEF不可能是矩形.
看了 如图,在△ABC中,∠ACB...的网友还看了以下:
偏微分方程U(t)=U(xx)怎么解其次满足U(0,t)=0,U(pi,t)=0满足形式为U(x, 2020-05-13 …
若实数a,b,c,d满足c>0,d若实数a,b,c,d满足c>0,d 2020-05-13 …
已知函数f(x)=min{3-12log2x,log2x},其中min(p,q}表示p,q两者中较 2020-05-13 …
已知椭圆x^2/a^2+y^2/b^2=1,(a>b>0)的离心率为√2/2,点A(0,1)是椭圆 2020-05-15 …
已知集合M是满足下列性质函数f(x)的全体,若函数f(x)的定义域为D,对于任意的X1,X2属于D 2020-05-16 …
常温常压下,等体积的四个容器中分别充满了O2、NO、NH3、HCl气体,将四个容器连通,气体充分混 2020-05-24 …
如图,在平面直角坐标系中,点A(0,a),点B(b,0),点D(d,0),其中a、b、d满足|a-3 2020-11-03 …
四点A、B、C、D共面当且仅当存在不全为零的实数a、b、c、d满足a+b+c+d=0使得a*OA+b 2020-11-08 …
(2012•梅州)如图,矩形OABC中,A(6,0)、C(0,23)、D(0,33),射线l过点D且 2020-11-12 …
已知函数f(x)=1/3ax³-1/4x²+cx+d(a,c,d∈R)满足f(0)=0,f(1)的导 2020-12-09 …