早教吧作业答案频道 -->数学-->
设f(x)在区间[a,b]上连续,且在(a,b)内有f''(x)>0,证明[f(x)-f(a)]/(x-a)在区间(a,b)内单调增加.
题目详情
设f(x)在区间[a,b]上连续,且在(a,b)内有f''(x)>0,证明[f(x)-f(a)]/(x-a)在区间(a,b)内单调增加.
▼优质解答
答案和解析
拉格朗日中值定理
(f'(x)-f'(a))/(x-a)=f''(ζ)
f'(a))=0
f'(x)/(x-a)=f''(ζ)
x (a,b) ζ (a,x)
f''(x)>0
f''(ζ)>0
f'(x)/(x-a)=f''(ζ)>0
x-a>0
f'(x)>0
f(x)在区间(a,b)内单调增
(f'(x)-f'(a))/(x-a)=f''(ζ)
f'(a))=0
f'(x)/(x-a)=f''(ζ)
x (a,b) ζ (a,x)
f''(x)>0
f''(ζ)>0
f'(x)/(x-a)=f''(ζ)>0
x-a>0
f'(x)>0
f(x)在区间(a,b)内单调增
看了 设f(x)在区间[a,b]上...的网友还看了以下:
数集A满足条件若a∈A则有(1+a)/(1-a)∈A(a≠1)数集A满足条件若a∈A则有(1+a) 2020-04-05 …
设A为n阶方阵,E为N阶单位矩阵,且A^2-A=2E,证明则r(2E-A)+r(E+A)=n设A为 2020-05-15 …
有难度M{A,B,C}==(A+B+C)/3m{A,B,C}=A(A为三数中最小的一个)则若M{A 2020-06-13 …
已知a+1/a=2求①a³+1/a³的值②a⁴+1/a⁴的值③aⁿ+1/aⁿ的值(要证已知a+1/ 2020-07-18 …
求A栏增加时间后,各栏对应的函数公式ABCD2011-2-813:33:4910250802201 2020-07-30 …
怎样证明零向量已知det(A-λE)=(a-λ)^3r(A-aE)^2=1证明(A-λE)^3=0 2020-08-01 …
若a,b,c均为实数,且a=x^2-2y+π/2,b=y^2-2z+π/3,c=z^2-2x+π/6 2020-11-01 …
设A是实对称方阵.证r(A)=r(A^T*A)=r(A*A^T)就是说证明A的秩等于(A的转置乘以A 2020-11-11 …
求证若B⊂A,则P(A-B)=P(A)-P(B)且P(A)≥P(B)……谢谢……给出一种解法,但是需 2020-12-01 …
A.B两校共录取150人而今年的人数是A.B两校的20倍还80人比去年增加12%A校增加6%B校增加 2020-12-22 …