早教吧作业答案频道 -->数学-->
如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,AD=2,BC=BD=3,AC=4.(1)求证:AC⊥BD;(2)若OA、OC为方程x2-mx+3.84=0的二根,求△AOB的面积.
题目详情
如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,AD=2,BC=BD=3,AC=4.

(1)求证:AC⊥BD;
(2)若OA、OC为方程x2-mx+3.84=0的二根,求△AOB的面积.

(1)求证:AC⊥BD;
(2)若OA、OC为方程x2-mx+3.84=0的二根,求△AOB的面积.
▼优质解答
答案和解析
(1)证明:过点D作DK∥AC交BC的延长线于K,
∵AD∥BC,
∴四边形ACKD是平行四边形,
∵AD=2,BC=BD=3,AC=4,
∴CK=AD=2,DK=AC=4,DK∥AC,
∴BK=BC+CK=5,
∴BD2+DK2=BK2,
∴△BDK是直角三角形,∠BDK=90°,
即DK⊥BD,
∴AC⊥BD;
(2)∵OA、OC为方程x2-mx+3.84=0的二根,OA+OC=AC=4,
∴方程为x2-4x+3.84=0,
解方程得:x1=1.6,x2=2.4,
∴OA=1.6,OC=2.4,
在RT△BOC中,OB=
=
=1.8,
∴S△AOB=
OA•OB=
×1.6×1.8=
.

∵AD∥BC,
∴四边形ACKD是平行四边形,
∵AD=2,BC=BD=3,AC=4,
∴CK=AD=2,DK=AC=4,DK∥AC,
∴BK=BC+CK=5,
∴BD2+DK2=BK2,
∴△BDK是直角三角形,∠BDK=90°,
即DK⊥BD,
∴AC⊥BD;
(2)∵OA、OC为方程x2-mx+3.84=0的二根,OA+OC=AC=4,
∴方程为x2-4x+3.84=0,
解方程得:x1=1.6,x2=2.4,
∴OA=1.6,OC=2.4,
在RT△BOC中,OB=
BC2−OC2 |
32−2.42 |
∴S△AOB=
1 |
2 |
1 |
2 |
36 |
25 |
看了 如图,在梯形ABCD中,AD...的网友还看了以下:
求直观图的面积在如图所示的坐标系中,高为2的等腰梯形满足AB=2,CD=4,则它的直观图的形状是, 2020-05-14 …
已知二次函数y=x平方-(m+1)x+m-1(1)求证不论m为何值,这个函数的图象与x轴总有交点: 2020-05-16 …
自动电梯以恒定v0匀速上升,一个质量为的人沿电梯匀速往上走,在秒内走过此电梯.电梯长为,电梯斜面倾 2020-05-17 …
英语翻译1号客梯、2号客梯、3号电梯、观光梯友情提示:1、当1号、2号客梯繁忙拥挤时,您可乘坐观光 2020-06-27 …
初二一梯形面积题已知,梯形ABCD中,AB//DC,AD=12CM,AC交梯形中位线MN于P,切M 2020-07-19 …
高数中为什么梯度的方向总是外法线的方向?曲线在同一点处的法向量应该有两个,但为什么梯度的向量(Fx 2020-07-31 …
如图,在平面直角坐标中,直角梯形OABC的边OC、OA分别在x轴、y轴上,AB∥OC,∠AOC=9 2020-08-01 …
消防电梯验收标准:要求从首层到顶层的运行时间不超过60S举例来说:酒店项目42层,从地下三层到地上3 2020-11-25 …
的一支在第一象限交梯形对角线OC于点D,交边BC于点E.若点C的坐标为(2,2),当阴影部分面积S最 2020-11-30 …
公共建筑楼梯部数的问题一座公共建筑一般至少两部楼梯作为疏散的交通工具.但是如果公建面积比较小,比如只 2020-12-01 …