早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知f(x)=sin(ωx+φ)(ω>0,|φ|≤π/2)为奇函数,且图像上相邻的一个最高点和最低点之间的距离为2√10(1)求函数f(x)的解析式(2)求f(1)+f(2)+f(3)+.+f(102)的值

题目详情
已知f(x)=sin(ωx+φ)(ω>0,|φ|≤π/2 )为奇函数,且图像上相邻的一个最高点和最低点之间的距离为2√10
(1)求函数f(x)的解析式
(2)求f(1)+f(2)+f(3)+.+f(102)的值
▼优质解答
答案和解析
奇函数满足f(0)=0 所以sin(φ)=0 φ=kπ 因为|φ|≤π/2,所以φ=0 最低点和最高点之间的距离=2√10,存在这样一个直角三角形,其中两个顶点分别为最高点和最低点,两点连线为直角三角形的斜边,长为2√10,而两条直角边分别为2和三角函数周期的一半,由此可解出三角函数周期的一半=6,故三角函数的周期=12,T=2π/ω=12,ω=π/6,所以f(x)=sin(πx/6)
由三角函数图像可以知道,f(1)+f(2)+f(3)+.+f(12)=0
所以f(1)+f(2)+f(3)+.+f(102)=f(97)+f(98)+f(99)+.+f(102)=f(1)+f(2)+f(3)+.+f(6)=1/2+√3/2+1+√3/2+1/2+0=2+√3