早教吧作业答案频道 -->数学-->
利用布洛赫定理Ψk(x+na)=Ψk(x)eiK.r的形式,针对一维周期势场中的电子波函数:(1)Ψk(x)=sinπx/a(2)Ψk(x)=icos3πx/a(3)Ψk(x)=∑l=负无穷到正无穷f(x-la)求电子在这些状态的波
题目详情
利用布洛赫定理Ψk(x+na)=Ψk(x)eiK.r的形式,针对一维周期势场中的电子波函数:
(1) Ψk(x)=sinπx/a
(2) Ψk(x)=icos3πx/a
(3) Ψk(x)=∑l=负无穷到正无穷f(x-la)
求电子在这些状态的波矢K(a为晶格常数)
(1) Ψk(x)=sinπx/a
(2) Ψk(x)=icos3πx/a
(3) Ψk(x)=∑l=负无穷到正无穷f(x-la)
求电子在这些状态的波矢K(a为晶格常数)
▼优质解答
答案和解析
一维情况下电子的波函数满足
Ψk(x+a)=eikaΨk(x)
第一问Ψk(x+a)=sinπ(x+a)/a=sin(πx/a+π)=-sinπx/a=-Ψk(x)=eikaΨk(x)
所以eika=-1 k=正负π/a,正负3π/a,正负5π/a,……
第二问Ψk(x+a)=icos[3π(x+a)/a]=icos(3πx/a+π)=-icos3πx/a=-Ψk(x)=eikaΨk(x)
所以eika=-1 k=正负π/a,正负3π/a,正负5π/a,……
第三问Ψk(x+a)=∑l=负无穷到正无穷f(x+a-la)=∑l=负无穷到正无穷f[x-(l-1)a]
令l’=l-1 有Ψk(x+a)=∑l=负无穷到正无穷f(x-l’a)=Ψk(x)=eikaΨk(x)
所以eika=1 k=0,正负2π/a,正负4π/a,正负6π/a,……
Ψk(x+a)=eikaΨk(x)
第一问Ψk(x+a)=sinπ(x+a)/a=sin(πx/a+π)=-sinπx/a=-Ψk(x)=eikaΨk(x)
所以eika=-1 k=正负π/a,正负3π/a,正负5π/a,……
第二问Ψk(x+a)=icos[3π(x+a)/a]=icos(3πx/a+π)=-icos3πx/a=-Ψk(x)=eikaΨk(x)
所以eika=-1 k=正负π/a,正负3π/a,正负5π/a,……
第三问Ψk(x+a)=∑l=负无穷到正无穷f(x+a-la)=∑l=负无穷到正无穷f[x-(l-1)a]
令l’=l-1 有Ψk(x+a)=∑l=负无穷到正无穷f(x-l’a)=Ψk(x)=eikaΨk(x)
所以eika=1 k=0,正负2π/a,正负4π/a,正负6π/a,……
看了 利用布洛赫定理Ψk(x+na...的网友还看了以下:
Look at the p 56 .It’s a picture o 57 a classroom 2020-04-06 …
英语单词填空(组成单词)1)d.l.e.d.m.i2)l.e.p.o.i.ee3)u.y.g.o. 2020-04-25 …
如图,在平面直角坐标系中,点P从点A开始沿x轴向点O以1cm/s的速度移动,点Q从点O开始沿y轴向 2020-04-26 …
圆O1是以R为半径的球O的小圆,若圆心O1到球心O的距离与球半径面积S1和球O的表面积S的比为S1 2020-05-15 …
用所给字母拼成单词.1.a,l,a,d,s.2.a,d,o,s.3.c,o,r,p,n用所给字母拼 2020-05-15 …
在哪有5个音阶指型的应用,很多前辈说:mi型对应C调,si型对应F调,La型对应G调,Re型对应D 2020-05-16 …
When you said sorry ,you didn't think that i turn 2020-05-16 …
.已知:Kps(ZnS)=1.2×10-23,Ksp(MnS)=1.4×10-15则()A.ϕo( 2020-06-11 …
点A、B、O分别以5个单位/s,2单位/s,1单位/s的速度向右移运动,几秒后,o点恰好成为线段中 2020-06-15 …
点A、B、O分别以5个单位/s,2单位/s,1单位/s的速度向右移运动,几秒后,o点恰好成为线段A 2020-06-15 …