早教吧作业答案频道 -->数学-->
设r=√(x^2+y^2+z^2)证明∂^2/∂x^2+∂^2r/∂r^2+∂^2r/∂z^2=2/r
题目详情
设 r=√(x^2+y^2+z^2 ) 证明 ∂^2/∂x^2+∂^2r/∂r^2+∂^2r/∂z^2=2/r
▼优质解答
答案和解析
显然∂r/∂x= x /√(x^2+y^2+z^2 ) = x/r,
而∂²r/∂x²= ∂(x/r) / ∂x
= (r -x*∂r/∂x) /r^2 = (r- x^2 /r) /r^2 = 1/r - x^2 /r^3
同理可以得到
∂²r/∂y²= 1/r -y^2/r^3
∂²r/∂z²= 1/r -z^2/r^3
所以
∂²r/∂x²+∂²r/∂y²+∂²r/∂z²
= 1/r - x^2 /r^3 + 1/r - y^2 /r^3 +1/r - z^2 /r^3
= 3/r - (x^2+y^2 +z^2)/r^3
而r=√(x^2+y^2+z^2 ),即(x^2+y^2+z^2)=r^2,
故
∂²r/∂x²+∂²r/∂y²+∂²r/∂z²
=3/r - (x^2+y^2 +z^2)/r^3
=3/r - r/r^3
=2/r
问题得到了证明
而∂²r/∂x²= ∂(x/r) / ∂x
= (r -x*∂r/∂x) /r^2 = (r- x^2 /r) /r^2 = 1/r - x^2 /r^3
同理可以得到
∂²r/∂y²= 1/r -y^2/r^3
∂²r/∂z²= 1/r -z^2/r^3
所以
∂²r/∂x²+∂²r/∂y²+∂²r/∂z²
= 1/r - x^2 /r^3 + 1/r - y^2 /r^3 +1/r - z^2 /r^3
= 3/r - (x^2+y^2 +z^2)/r^3
而r=√(x^2+y^2+z^2 ),即(x^2+y^2+z^2)=r^2,
故
∂²r/∂x²+∂²r/∂y²+∂²r/∂z²
=3/r - (x^2+y^2 +z^2)/r^3
=3/r - r/r^3
=2/r
问题得到了证明
看了 设r=√(x^2+y^2+z...的网友还看了以下:
这有2题物理题..达人帮我解下..(1).小明和小红比赛多次100米跑步.每次小明都比小红快10m 2020-04-27 …
初二数学题我们来证明“2=3”.这是西班牙流行的一个“诡辩”,人们用下述方法“证明”这一结论.因为 2020-05-16 …
1.2~7段是按什么顺序写的?请结合文章类容简要说明.2.第6段主要用了哪些说明方法?有什么表达效 2020-06-07 …
请告诉我这个证明过程中哪里错了证明2=3因为4-10=9-15所以4-10+25/4=9-15+2 2020-07-17 …
证明:2[根号下(n+1)-1]小于1+1/根号2+1/根号3+------+1/根号n小于2根号 2020-07-30 …
因数分解的推论1.如果2^p-1=q是质数,证明2^(p-1)q的正确约数是1,2,2^2,... 2020-07-30 …
1.求:怎么证明2^x是增函数?2.怎么样证明2^x+(1/2)^x是在正实数范围内是增函数f(x 2020-08-01 …
1.已知f(n)=1+1/2+1/3+.+1/n,且g(n)=[1/f(n)-1][f(1)+f( 2020-08-01 …
2人坐7个座位,且2人不能相邻,几种坐法?此题多种做法,现在这项弄明白P(2/6)2人不能相邻,说明 2020-12-13 …
小明2年前将压岁钱存入银行,存2年定期,年利率为2.70%,今年到期取出521.6元,两年前小明存小 2021-01-05 …