早教吧 育儿知识 作业答案 考试题库 百科 知识分享

数列a中,a1=1.Sn表示前n项和,且Sn,Sn+1.2S1成等差数列,计算s1.s2.s3的值,2.根据以上计算结果猜测Sn表达式,并用数学归纳法证明你的猜想

题目详情
数列【a】中,a1=1.Sn表示前n项和,且Sn,Sn+1.2S1 成等差数列,
计算s1.s2.s3的值,2.根据以上计算结果猜测Sn表达式,并用数学归纳法证明你的猜想
▼优质解答
答案和解析
(1)S1=a1=1 ∵Sn,Sn+1.2S1 成等差数列,∴2Sn+1=Sn+2
∴2S2=S1+2=1+2∴S2=3/2
∵2S3=S2+2∴S3=7/4
(2)猜想:Sn=(2^n-1)/2^(n-1)
数学归纳法如下:
n=1时,S1=(2-1)/2^0=1=a1=1符合
假设n=k时,成立,即Sk=(2^k-1)/2^(k-1)
∵Sn,Sn+1.2S1 成等差数列,∴2Sk+1=Sk+2
∴2Sk+1=(2^k-1)/2^(k-1)+2=(2^k-1+2^k)/2^(k-1)=[2^(k+1)-1]/2^(k-1)
∴Sk+1=[2^(k+1)-1]/2^k
n=k+1时也成立
∴Sn=(2^n-1)/2^(n-1)
看了 数列a中,a1=1.Sn表示...的网友还看了以下: