早教吧作业答案频道 -->数学-->
一道高二数列数列{AN}的前N项和为SN,若{SN}是首项为S1,各项均为正数且公比为Q的等比数列.(1)求AN通项(用S1和Q表示)(2)比较AN+AN+2与2AN+1的大小并证明结论不好意思An+A(n+2)=S1*(Q-1)*Q^(n-2
题目详情
一道高二数列
数列{AN}的前N项和为SN,若{SN}是首项为S1,各项均为正数且公比为Q的等比数列.
(1)求AN通项(用S1和Q表示)
(2)比较AN+AN+2与2AN+1的大小并证明结论
不好意思
An+A(n+2)=S1*(Q-1)*Q^(n-2)+S1*(Q-1)*Q^n
>=2S1*(Q-1) *Q^(n-1)
这步怎么来的?
数列{AN}的前N项和为SN,若{SN}是首项为S1,各项均为正数且公比为Q的等比数列.
(1)求AN通项(用S1和Q表示)
(2)比较AN+AN+2与2AN+1的大小并证明结论
不好意思
An+A(n+2)=S1*(Q-1)*Q^(n-2)+S1*(Q-1)*Q^n
>=2S1*(Q-1) *Q^(n-1)
这步怎么来的?
▼优质解答
答案和解析
A1=S1
Sn=S1*Q^(n-1)
Sn+1=S1*Q^n
An+1=S1Q^(n-1)*(Q-1)
An=S1*(Q-1)*Q^(n-2)
An+A(n+2)=S1*(Q-1)*Q^(n-2)+S1*(Q-1)*Q^n
>=2S1*(Q-1) *Q^(n-1)
2A(n+1)=2S1*(Q-1)*Q^(n-1)
因为Q不能为1
所以AN+A(N+2)大.
什么怎么来的,按照上面的通现公式来的吗.
Sn=S1*Q^(n-1)
Sn+1=S1*Q^n
An+1=S1Q^(n-1)*(Q-1)
An=S1*(Q-1)*Q^(n-2)
An+A(n+2)=S1*(Q-1)*Q^(n-2)+S1*(Q-1)*Q^n
>=2S1*(Q-1) *Q^(n-1)
2A(n+1)=2S1*(Q-1)*Q^(n-1)
因为Q不能为1
所以AN+A(N+2)大.
什么怎么来的,按照上面的通现公式来的吗.
看了 一道高二数列数列{AN}的前...的网友还看了以下:
∑(2^n)/(n^n)的收敛性你回答的是:取后一项后前一项的比.(2^n+1)/((n+1)^(n 2020-03-31 …
求数列0,1,1,2,2,3,3,4,4.的前n项和S当n是奇数时.S=2*{[(n-1)/2]* 2020-04-09 …
2^2-1^2=2*1+13^2-2^2=2*2+14^2-3^2=2*3+1……(n+1)^2- 2020-05-19 …
求此极限,n趋于无穷,limln(1+1/n)^2+(1+2/n)^2+(1+n/n)^2liml 2020-06-14 …
已知数列{an}的通项公式为an=2^(n-1)+1则a1Cn^0+a2Cn^1+a3Cn^2+. 2020-07-09 …
若数列{bn}满足,b1/a1+b2/a2+.+bn/an=1-1/2^n,n∈N+,求{bn}的 2020-07-23 …
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·5·…(2n-1)(n∈N*)时, 2020-08-03 …
求教一个数学合情推理的问题通过计算可得下列等式2^2-1^2=2*1+13^2-2^2=2*2+14 2020-11-21 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
我们可以通过计算求得:1+2+3+...+n=n*(n+1)除以2,其中n是正整数,现在我们来研究一 2020-12-04 …