早教吧作业答案频道 -->数学-->
解析几何关于面积最值问题在平面直角坐标系xOy中,过定点C(o,p)作直线与抛物线x^2=2py(p>0)相交于A,B两点,若点N是点C关于坐标原点O的对称点,求三角形ANB面积的最小值.
题目详情
解析几何关于面积最值问题
在平面直角坐标系xOy中,过定点C(o,p)作直线与抛物线x^2=2py(p>0)相交于A,B两点,若点N是点C关于坐标原点O的对称点,求三角形ANB面积的最小值.
在平面直角坐标系xOy中,过定点C(o,p)作直线与抛物线x^2=2py(p>0)相交于A,B两点,若点N是点C关于坐标原点O的对称点,求三角形ANB面积的最小值.
▼优质解答
答案和解析
给你说下思路吧,要求三角行ANB的面积最值,首先要求出该三角形面积的表达式,我们最先想到的当然是(底边^高/2),这里的底边很明显应该是AB边,而点N到直线AB的距离即为高,所以,首先设过点C的直线方程为y=kx+b,将C点坐标带入可以解出b=p,然后求出点N的的坐标,显然,N点坐标为(0.-p).由点到直线的距离公式很容易可以算出点N到直线AB的距离,该距离表达式由参数k和p所表示,2p/根号下(k^2+1),记下来要计算的是线段AB的长度,由两点间的距离公式可知,设A,B点坐标分别为(x1,y1),(x2,y2),所以AB间的距离即可表示为根号下{(x2-x1)^2+(y2-y1)^2}=根号下{(x2+x1)^2+(y2+y1)^2-4x1*x2-4y1*y2},很明显,只要知道直线AB和抛物线方程联立后化为关于x和关于y的一元二次方程的两根之和与两根之积就可表示出AB间距离.经过简单的带入运算,可得出线段AB长度的表达式,进而可表达出三角形ANB的面积,必定是关于参数K的表达式,然后运用导数的性质或者求极值的方法即可算出.
看了 解析几何关于面积最值问题在平...的网友还看了以下:
圆0和o'都经过点A,B.点P在BA延长线上,过P作圆O的割线PCD交圆0于CD两点作圆o'的切线P 2020-03-31 …
已知圆x平方+y平方+x-6y+m=0和直线x+2y-3=0交于P,Q两点 且OP⊥OQ(O为坐已 2020-05-13 …
一道高一数学问题,急求,谢谢,帮帮忙已知直线l:2x-y+1=0和点O(0,0)、M(0,3),试 2020-06-10 …
如图1,AB是O的直径,F为O外一点,C为O上一点,FC交O于点E,且∠FAE=∠ECA.(1)求 2020-07-27 …
如图,过y轴上一点A(0,1)作AC平行于X轴,交抛物线y=x?(x≥0)于点B,交抛物线y=1/ 2020-07-29 …
已知关于x的不等式组5-2x≥-1x-a大于0无解,a的取值范围是≥3若只将不等式组中X-a>o改 2020-07-31 …
已知圆C:x^2+y^2-6x-8y+21=0,点A(1,0),O是坐标原点若以A(1,0)为圆心的 2020-10-31 …
超简单的一次函数题!已知以A(0,2),B(2,0),O(0,0)三点为顶点的三角形被直线y=ax- 2020-12-08 …
使用mathematica求解多元不等式整数解出错,tt={10.11,14.31,17.48,25 2020-12-14 …
如图点0在角APB的角平分线上圆0与PA相切于点C求证直线PB与圆O相切,PO的延长线与圆0交于点E 2021-01-11 …