早教吧 育儿知识 作业答案 考试题库 百科 知识分享

帮忙已知1×2×3=6,2×3×4=24,3×4×5=60,…,试证明:对任意的整数n,所有形如n²已知1×2×3=6,2×3×4=24,3×4×5=60,…,试证明:对任意的整数n,所有形如n²(n+1)+2n(n+1)的数的最大公约数是6

题目详情
帮忙已知1×2×3=6,2×3×4=24,3×4×5=60,…,试证明:对任意的整数n,所有形如n²
已知1×2×3=6,2×3×4=24,3×4×5=60,…,试证明:对任意的整数n,所有形如n²(n+1)+2n(n+1)的数的最大公约数是6
▼优质解答
答案和解析
n^2*(n+1)+2n(n+1)
=(n+1)(n^2+2n)
=n(n+1)(n+2) ,
这是三个连续整数的积,其中一定至少有一个偶数,恰有一个是 3 的倍数,
因此 n(n+1)(n+2) 一定是 6 的倍数,
又由于 1×2×3 与 2×3×4 的最大公约数为 6 ,
所以,所有形如 n(n+1)(n+2) 的数的最大公约数为 6 .