早教吧作业答案频道 -->数学-->
计算:(1)2×(−12)3−3×(−12)2−1(2)−679−[32×(−45)+0.2+135÷117](3)1−{1−[1−315(−516}]×3}÷(−1)(4)11×2+12×3+13×4+…+12000×12001.
题目详情
2×(−
)3−3×(−
)2−1
(2)−6
−[
×(−
)+0.2+1
÷1
]
(3)1−{1−[1−3
(−
}]×3}÷(−1)
(4)
+
+
+…+
×
.×(−
)3−3×(−
)2−1
(2)−6
−[
×(−
)+0.2+1
÷1
]
(3)1−{1−[1−3
(−
}]×3}÷(−1)
(4)
+
+
+…+
×
.×(−
)3−3×(−
)2−1
(2)−6
−[
×(−
)+0.2+1
÷1
]
(3)1−{1−[1−3
(−
}]×3}÷(−1)
(4)
+
+
+…+
×
.
1 1 2 2 3−3×(−
)2−1
(2)−6
−[
×(−
)+0.2+1
÷1
]
(3)1−{1−[1−3
(−
}]×3}÷(−1)
(4)
+
+
+…+
×
.×(−
)2−1
(2)−6
−[
×(−
)+0.2+1
÷1
]
(3)1−{1−[1−3
(−
}]×3}÷(−1)
(4)
+
+
+…+
×
.×(−
)2−1
(2)−6
−[
×(−
)+0.2+1
÷1
]
(3)1−{1−[1−3
(−
}]×3}÷(−1)
(4)
+
+
+…+
×
.
1 1 2 2 2−1
(2)−6
−[
×(−
)+0.2+1
÷1
]
(3)1−{1−[1−3
(−
}]×3}÷(−1)
(4)
+
+
+…+
×
.
−6
−[
×(−
)+0.2+1
÷1
]
(3)1−{1−[1−3
(−
}]×3}÷(−1)
(4)
+
+
+…+
×
.
7 7 9 9
3 3 2 2
4 4 5 5
3 3 5 5
1 1 7 7
1−{1−[1−3
(−
}]×3}÷(−1)
(4)
+
+
+…+
×
.
1 1 5 5
5 5 16 16
+
+
+…+
×
.
1 1 1×2 1×2
1 1 2×3 2×3
1 1 3×4 3×4
1 1 2000 2000
1 1 2001 2001
1 |
2 |
1 |
2 |
(2)−6
7 |
9 |
3 |
2 |
4 |
5 |
3 |
5 |
1 |
7 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
(2)−6
7 |
9 |
3 |
2 |
4 |
5 |
3 |
5 |
1 |
7 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
(2)−6
7 |
9 |
3 |
2 |
4 |
5 |
3 |
5 |
1 |
7 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
(2)−6
7 |
9 |
3 |
2 |
4 |
5 |
3 |
5 |
1 |
7 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
(2)−6
7 |
9 |
3 |
2 |
4 |
5 |
3 |
5 |
1 |
7 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
(2)−6
7 |
9 |
3 |
2 |
4 |
5 |
3 |
5 |
1 |
7 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
(2)−6
7 |
9 |
3 |
2 |
4 |
5 |
3 |
5 |
1 |
7 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
−6
7 |
9 |
3 |
2 |
4 |
5 |
3 |
5 |
1 |
7 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
7 |
9 |
3 |
2 |
4 |
5 |
3 |
5 |
1 |
7 |
1−{1−[1−3
1 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
5 |
5 |
16 |
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
▼优质解答
答案和解析
(1)2×(−
)3−3×(−
)2−1=2×(−
)−3×
-1=-
−
−1=-2;
(2)−6
−[
×(−
)+0.2+1
÷1
]
=-
-(-1.2+0.2+
×
)
=-
-(-1+
)
=-
;
(3)1−{1−[1−3
(−
}]×3}÷(−1)=1-[1-(1+
×
)×3]÷(-1)=1-(1-6)÷(-1)=1-5=-4;
(4)
+
+
+…+
×
=1-
+
−
+
−
+…+
−
=1-
=
. 2×(−
1 1 12 2 2)3−3×(−
)2−1=2×(−
)−3×
-1=-
−
−1=-2;
(2)−6
−[
×(−
)+0.2+1
÷1
]
=-
-(-1.2+0.2+
×
)
=-
-(-1+
)
=-
;
(3)1−{1−[1−3
(−
}]×3}÷(−1)=1-[1-(1+
×
)×3]÷(-1)=1-(1-6)÷(-1)=1-5=-4;
(4)
+
+
+…+
×
=1-
+
−
+
−
+…+
−
=1-
=
. 3−3×(−
1 1 12 2 2)2−1=2×(−
)−3×
-1=-
−
−1=-2;
(2)−6
−[
×(−
)+0.2+1
÷1
]
=-
-(-1.2+0.2+
×
)
=-
-(-1+
)
=-
;
(3)1−{1−[1−3
(−
}]×3}÷(−1)=1-[1-(1+
×
)×3]÷(-1)=1-(1-6)÷(-1)=1-5=-4;
(4)
+
+
+…+
×
=1-
+
−
+
−
+…+
−
=1-
=
. 2−1=2×(−
)−3×
-1=-
−
−1=-2;
(2)−6
−[
×(−
)+0.2+1
÷1
]
=-
-(-1.2+0.2+
×
)
=-
-(-1+
)
=-
;
(3)1−{1−[1−3
(−
}]×3}÷(−1)=1-[1-(1+
×
)×3]÷(-1)=1-(1-6)÷(-1)=1-5=-4;
(4)
+
+
+…+
×
=1-
+
−
+
−
+…+
−
=1-
=
. (−
1 1 18 8 8)−3×
1 1 14 4 4-1=-
−
−1=-2;
(2)−6
−[
×(−
)+0.2+1
÷1
]
=-
-(-1.2+0.2+
×
)
=-
-(-1+
)
=-
;
(3)1−{1−[1−3
(−
}]×3}÷(−1)=1-[1-(1+
×
)×3]÷(-1)=1-(1-6)÷(-1)=1-5=-4;
(4)
+
+
+…+
×
=1-
+
−
+
−
+…+
−
=1-
=
.
1 1 14 4 4−
3 3 34 4 4−1=-2;
(2)−6
−[
×(−
)+0.2+1
÷1
]
=-
-(-1.2+0.2+
×
)
=-
-(-1+
)
=-
;
(3)1−{1−[1−3
(−
}]×3}÷(−1)=1-[1-(1+
×
)×3]÷(-1)=1-(1-6)÷(-1)=1-5=-4;
(4)
+
+
+…+
×
=1-
+
−
+
−
+…+
−
=1-
=
. −6
7 7 79 9 9−[
3 3 32 2 2×(−
4 4 45 5 5)+0.2+1
3 3 35 5 5÷1
1 1 17 7 7]
=-
-(-1.2+0.2+
×
)
=-
-(-1+
)
=-
;
(3)1−{1−[1−3
(−
}]×3}÷(−1)=1-[1-(1+
×
)×3]÷(-1)=1-(1-6)÷(-1)=1-5=-4;
(4)
+
+
+…+
×
=1-
+
−
+
−
+…+
−
=1-
=
.
61 61 619 9 9-(-1.2+0.2+
×
)
=-
-(-1+
)
=-
;
(3)1−{1−[1−3
(−
}]×3}÷(−1)=1-[1-(1+
×
)×3]÷(-1)=1-(1-6)÷(-1)=1-5=-4;
(4)
+
+
+…+
×
=1-
+
−
+
−
+…+
−
=1-
=
.
8 8 85 5 5×
)
=-
-(-1+
)
=-
;
(3)1−{1−[1−3
(−
}]×3}÷(−1)=1-[1-(1+
×
)×3]÷(-1)=1-(1-6)÷(-1)=1-5=-4;
(4)
+
+
+…+
×
=1-
+
−
+
−
+…+
−
=1-
=
.
7 7 78 8 8)
=-
-(-1+
)
=-
;
(3)1−{1−[1−3
(−
}]×3}÷(−1)=1-[1-(1+
×
)×3]÷(-1)=1-(1-6)÷(-1)=1-5=-4;
(4)
+
+
+…+
×
=1-
+
−
+
−
+…+
−
=1-
=
.
61 61 619 9 9-(-1+
)
=-
;
(3)1−{1−[1−3
(−
}]×3}÷(−1)=1-[1-(1+
×
)×3]÷(-1)=1-(1-6)÷(-1)=1-5=-4;
(4)
+
+
+…+
×
=1-
+
−
+
−
+…+
−
=1-
=
.
7 7 75 5 5)
=-
;
(3)1−{1−[1−3
(−
}]×3}÷(−1)=1-[1-(1+
×
)×3]÷(-1)=1-(1-6)÷(-1)=1-5=-4;
(4)
+
+
+…+
×
=1-
+
−
+
−
+…+
−
=1-
=
.
323 323 32345 45 45;
(3)1−{1−[1−3
(−
}]×3}÷(−1)=1-[1-(1+
×
)×3]÷(-1)=1-(1-6)÷(-1)=1-5=-4;
(4)
+
+
+…+
×
=1-
+
−
+
−
+…+
−
=1-
=
. 1−{1−[1−3
1 1 15 5 5(−
5 5 516 16 16}]×3}÷(−1)=1-[1-(1+
×
)×3]÷(-1)=1-(1-6)÷(-1)=1-5=-4;
(4)
+
+
+…+
×
=1-
+
−
+
−
+…+
−
=1-
=
.
16 16 165 5 5×
5 5 516 16 16)×3]÷(-1)=1-(1-6)÷(-1)=1-5=-4;
(4)
+
+
+…+
×
=1-
+
−
+
−
+…+
−
=1-
=
.
1 1 11×2 1×2 1×2+
1 1 12×3 2×3 2×3+
1 1 13×4 3×4 3×4+…+
1 1 12000 2000 2000×
1 1 12001 2001 2001=1-
+
−
+
−
+…+
−
=1-
=
.
1 1 12 2 2+
1 1 12 2 2−
1 1 13 3 3+
1 1 13 3 3−
1 1 14 4 4+…+
1 1 12000 2000 2000−
1 1 12001 2001 2001=1-
=
.
1 1 12001 2001 2001=
2000 2000 20002001 2001 2001.
1 |
2 |
1 |
2 |
1 |
8 |
1 |
4 |
1 |
4 |
3 |
4 |
(2)−6
7 |
9 |
3 |
2 |
4 |
5 |
3 |
5 |
1 |
7 |
=-
61 |
9 |
8 |
5 |
7 |
8 |
=-
61 |
9 |
7 |
5 |
=-
323 |
45 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
16 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2000 |
1 |
2001 |
1 |
2001 |
2000 |
2001 |
1 |
2 |
1 |
2 |
1 |
8 |
1 |
4 |
1 |
4 |
3 |
4 |
(2)−6
7 |
9 |
3 |
2 |
4 |
5 |
3 |
5 |
1 |
7 |
=-
61 |
9 |
8 |
5 |
7 |
8 |
=-
61 |
9 |
7 |
5 |
=-
323 |
45 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
16 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2000 |
1 |
2001 |
1 |
2001 |
2000 |
2001 |
1 |
2 |
1 |
8 |
1 |
4 |
1 |
4 |
3 |
4 |
(2)−6
7 |
9 |
3 |
2 |
4 |
5 |
3 |
5 |
1 |
7 |
=-
61 |
9 |
8 |
5 |
7 |
8 |
=-
61 |
9 |
7 |
5 |
=-
323 |
45 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
16 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2000 |
1 |
2001 |
1 |
2001 |
2000 |
2001 |
1 |
8 |
1 |
4 |
1 |
4 |
3 |
4 |
(2)−6
7 |
9 |
3 |
2 |
4 |
5 |
3 |
5 |
1 |
7 |
=-
61 |
9 |
8 |
5 |
7 |
8 |
=-
61 |
9 |
7 |
5 |
=-
323 |
45 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
16 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2000 |
1 |
2001 |
1 |
2001 |
2000 |
2001 |
1 |
8 |
1 |
4 |
1 |
4 |
3 |
4 |
(2)−6
7 |
9 |
3 |
2 |
4 |
5 |
3 |
5 |
1 |
7 |
=-
61 |
9 |
8 |
5 |
7 |
8 |
=-
61 |
9 |
7 |
5 |
=-
323 |
45 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
16 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2000 |
1 |
2001 |
1 |
2001 |
2000 |
2001 |
1 |
4 |
3 |
4 |
(2)−6
7 |
9 |
3 |
2 |
4 |
5 |
3 |
5 |
1 |
7 |
=-
61 |
9 |
8 |
5 |
7 |
8 |
=-
61 |
9 |
7 |
5 |
=-
323 |
45 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
16 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2000 |
1 |
2001 |
1 |
2001 |
2000 |
2001 |
7 |
9 |
3 |
2 |
4 |
5 |
3 |
5 |
1 |
7 |
=-
61 |
9 |
8 |
5 |
7 |
8 |
=-
61 |
9 |
7 |
5 |
=-
323 |
45 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
16 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2000 |
1 |
2001 |
1 |
2001 |
2000 |
2001 |
61 |
9 |
8 |
5 |
7 |
8 |
=-
61 |
9 |
7 |
5 |
=-
323 |
45 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
16 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2000 |
1 |
2001 |
1 |
2001 |
2000 |
2001 |
8 |
5 |
7 |
8 |
=-
61 |
9 |
7 |
5 |
=-
323 |
45 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
16 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2000 |
1 |
2001 |
1 |
2001 |
2000 |
2001 |
7 |
8 |
=-
61 |
9 |
7 |
5 |
=-
323 |
45 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
16 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2000 |
1 |
2001 |
1 |
2001 |
2000 |
2001 |
61 |
9 |
7 |
5 |
=-
323 |
45 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
16 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2000 |
1 |
2001 |
1 |
2001 |
2000 |
2001 |
7 |
5 |
=-
323 |
45 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
16 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2000 |
1 |
2001 |
1 |
2001 |
2000 |
2001 |
323 |
45 |
(3)1−{1−[1−3
1 |
5 |
5 |
16 |
16 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2000 |
1 |
2001 |
1 |
2001 |
2000 |
2001 |
1 |
5 |
5 |
16 |
16 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2000 |
1 |
2001 |
1 |
2001 |
2000 |
2001 |
16 |
5 |
5 |
16 |
(4)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2000 |
1 |
2001 |
1 |
2001 |
2000 |
2001 |
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2000 |
1 |
2001 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2000 |
1 |
2001 |
1 |
2001 |
2000 |
2001 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2000 |
1 |
2001 |
1 |
2001 |
2000 |
2001 |
1 |
2001 |
2000 |
2001 |
看了 计算:(1)2×(−12)3...的网友还看了以下:
一养鱼专业户从鱼塘捕得同时放养的草鱼100条,他从中任选5条,称得它们的质量如下(单位:kg):1 2020-05-17 …
若一列数除了首末两数外,每个数都等于它两旁紧相邻的两个数之和,则称之为具有“波动性质”.例如2,3 2020-06-16 …
在1,1/2,1/3,....,1/99,1/100中,选出若干个数,使得他们的和大于3,至少要选 2020-06-20 …
用[x]表示不大于x的最大整数,如[3]=3,[3.1]=3.设S=1[(10×11−1)210× 2020-07-18 …
请把下列证明过程补充完整.已知:如图,DE∥BC,BE平分∠ABC.求证:∠1=∠3.证明:因为B 2020-07-23 …
计算下列各式,并且把结果化为只含有正整数指数幂的形式.(1)(a2b-3)-2⋅(a-2b3)2( 2020-08-01 …
已知:如图,∠B=∠C,∠1=∠3.求证:∠A=∠D.请把下面的推理过程填写完整.证明:∵∠B=∠ 2020-08-02 …
根据不等式的基本性质,把下列不等式化成x>a或x<a的形式.(1)x-1<5.(2)4x-1≥3. 2020-08-03 …
完成下列推理过程.(1)如图甲:∠1=∠2=∠3,完成说理过程并注明理由:∵∠1=∠2∴EF∥BD∵ 2020-11-21 …
一养鱼专业户从鱼塘捕得同时放养的草鱼100条,他从中任选5条,称得它们的质量如下(单位:kg):1. 2020-12-31 …