早教吧作业答案频道 -->数学-->
解方程或比例:18X-1=0.2X:514=21:58x:0.4=310:125.
题目详情
解方程或比例:
X:
x:0.4=
|
| 1 |
| 8 |
X:
| 5 |
| 14 |
| 5 |
| 8 |
x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 1 |
| 8 |
X:
| 5 |
| 14 |
| 5 |
| 8 |
x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 1 |
| 8 |
X:
| 5 |
| 14 |
| 5 |
| 8 |
x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 1 |
| 8 |
X:
| 5 |
| 14 |
| 5 |
| 8 |
x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 1 |
| 8 |
X:
| 5 |
| 14 |
| 5 |
| 8 |
x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 1 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 5 |
| 14 |
| 5 |
| 8 |
x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 5 |
| 8 |
x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
▼优质解答
答案和解析
(1)
X-1=0.2,
X-1+1=0.2+1,
X=1.2,
X÷
=1.2÷
X=9.6,
(2)X:
=21:
,
X=
×21,
X÷
=
×21÷
,
X=
×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
. (1)
X-1=0.2,
X-1+1=0.2+1,
X=1.2,
X÷
=1.2÷
X=9.6,
(2)X:
=21:
,
X=
×21,
X÷
=
×21÷
,
X=
×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
. (1)
X-1=0.2,
X-1+1=0.2+1,
X=1.2,
X÷
=1.2÷
X=9.6,
(2)X:
=21:
,
X=
×21,
X÷
=
×21÷
,
X=
×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
. (1)
X-1=0.2,
X-1+1=0.2+1,
X=1.2,
X÷
=1.2÷
X=9.6,
(2)X:
=21:
,
X=
×21,
X÷
=
×21÷
,
X=
×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
1 8 1 1 1 8 8 8 X-1=0.2,
X-1+1=0.2+1,
X=1.2,
X÷
=1.2÷
X=9.6,
(2)X:
=21:
,
X=
×21,
X÷
=
×21÷
,
X=
×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
1 8 1 1 1 8 8 8 X-1+1=0.2+1,
X=1.2,
X÷
=1.2÷
X=9.6,
(2)X:
=21:
,
X=
×21,
X÷
=
×21÷
,
X=
×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
1 8 1 1 1 8 8 8 X=1.2,
X÷
=1.2÷
X=9.6,
(2)X:
=21:
,
X=
×21,
X÷
=
×21÷
,
X=
×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
1 8 1 1 1 8 8 8 X÷
=1.2÷
X=9.6,
(2)X:
=21:
,
X=
×21,
X÷
=
×21÷
,
X=
×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
1 8 1 1 1 8 8 8 =1.2÷
X=9.6,
(2)X:
=21:
,
X=
×21,
X÷
=
×21÷
,
X=
×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
1 8 1 1 1 8 8 8
X=9.6,
(2)X:
=21:
,
X=
×21,
X÷
=
×21÷
,
X=
×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
5 14 5 5 5 14 14 14 =21:
,
X=
×21,
X÷
=
×21÷
,
X=
×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
5 8 5 5 5 8 8 8 ,
X=
×21,
X÷
=
×21÷
,
X=
×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
5 8 5 5 5 8 8 8 X=
×21,
X÷
=
×21÷
,
X=
×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
5 14 5 5 5 14 14 14 ×21,
X÷
=
×21÷
,
X=
×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
5 8 5 5 5 8 8 8 X÷
=
×21÷
,
X=
×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
5 8 5 5 5 8 8 8 =
×21÷
,
X=
×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
5 14 5 5 5 14 14 14 ×21÷
,
X=
×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
5 8 5 5 5 8 8 8 ,
X=
×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
5 14 5 5 5 14 14 14 ×21×
,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
8 5 8 8 8 5 5 5 ,
X=12;
(3) x:0.4=
:
,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
. x:0.4=
3 10 3 3 3 10 10 10 :
12 5 12 12 12 5 5 5 ,
x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
12 5 12 12 12 5 5 5 x=0.4×
,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
3 10 3 3 3 10 10 10 ,
x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
12 5 12 12 12 5 5 5 x÷
=0.4×
÷
,
x=0.4×
×
,
x=
.
12 5 12 12 12 5 5 5 =0.4×
÷
,
x=0.4×
×
,
x=
.
3 10 3 3 3 10 10 10 ÷
,
x=0.4×
×
,
x=
.
12 5 12 12 12 5 5 5 ,
x=0.4×
×
,
x=
.
3 10 3 3 3 10 10 10 ×
,
x=
.
5 12 5 5 5 12 12 12 ,
x=
.
1 20 1 1 1 20 20 20 .
(1)
X=9.6, (2)X:
X=
X=12; (3) x:0.4=
x=0.4×
x=
|
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
X=9.6,
(2)X:
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
X=
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
X=9.6,
(2)X:
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
X=
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
X=9.6,
(2)X:
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
X=
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
X=9.6,
(2)X:
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
X=
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
X=9.6,
(2)X:
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
X=
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
X=9.6,
(2)X:
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
X=
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
X=9.6,
(2)X:
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
X=
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 8 |
X=9.6,
(2)X:
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
X=
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 1 |
| 8 |
| 1 |
| 8 |
X=9.6,
(2)X:
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
X=
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 1 |
| 8 |
X=9.6,
(2)X:
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
X=
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
X=
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
X=
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
X=
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 5 |
| 14 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
X=
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 5 |
| 8 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
X=
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 5 |
| 8 |
| 5 |
| 14 |
| 5 |
| 8 |
X=
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 5 |
| 14 |
| 5 |
| 8 |
X=
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 5 |
| 8 |
X=
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 5 |
| 14 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 8 |
| 5 |
X=12;
(3) x:0.4=
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 3 |
| 10 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 12 |
| 5 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 12 |
| 5 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 3 |
| 10 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 12 |
| 5 |
x=0.4×
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 3 |
| 10 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 5 |
| 12 |
x=
| 1 |
| 20 |
| 1 |
| 20 |
看了 解方程或比例:18X-1=0...的网友还看了以下:
根据如图所示的图像填空:(1)a——0;(2)b——0;(3)c——0;(4)b的平方-4ac—— 2020-04-26 …
几道轨迹方程的数学题1.三角形ABC的顶点B,C坐标分别是(0,0)(4,0)AB边上的中线长为3 2020-04-27 …
还是lingo问题road(country,country):length,xie,c;endse 2020-05-13 …
ansys直接建立有限元模型问题finish/clear/prep7n,1,0,0,0n,2,0, 2020-05-17 …
长200m,截面积1mm的平方的铜导线(在20摄氏度时,P=0.0175欧mm的平方/m,a=0. 2020-06-03 …
(1)已知圆的方程为x的平方+y的平方-2x+2y=0,求圆的周长.(2)已知直...(1)已知圆 2020-06-08 …
已知点P在xOy平面内,点A的坐标为(0,0,3),PA=5,那么满足此条件的点P组成什么曲线?难 2020-07-31 …
1.设集合A={x|x的平方+(2m-3)x-3m=0},B={x|x的平方+(m-3)x+m的平 2020-08-02 …
算数平方根算术平方根怎么求?例如:0.0625的算术平方根是0.25是怎么求的?再例如:144的算 2020-08-03 …
ax的平方+bx+c>0集解请分类讨论:1.当b平方-4ac>0时.2.当b平方-4ac<0时.3. 2020-11-07 …