早教吧作业答案频道 -->数学-->
计算下列各题,能简算的要简算.325×99+3257÷45+9×5448×(712+14)511×14÷511
题目详情
|
计算下列各题,能简算的要简算.
| 7÷
| ||||||||||||
48×(
|
|
计算下列各题,能简算的要简算.
| 7÷
| ||||||||||||
48×(
|
|
计算下列各题,能简算的要简算.
| 7÷
| ||||||||||||
48×(
|
|
计算下列各题,能简算的要简算.
| 7÷
| ||||||||||||
48×(
|
|
计算下列各题,能简算的要简算.
| 7÷
| ||||||||||||
48×(
|
|
3 |
25 |
3 |
25 |
4 |
5 |
5 |
4 |
7 |
12 |
1 |
4 |
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
3 |
25 |
3 |
25 |
4 |
5 |
5 |
4 |
3 |
25 |
3 |
25 |
3 |
25 |
3 |
25 |
3 |
25 |
3 |
25 |
3 |
25 |
4 |
5 |
5 |
4 |
4 |
5 |
5 |
4 |
4 |
5 |
5 |
4 |
5 |
4 |
7 |
12 |
1 |
4 |
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
7 |
12 |
1 |
4 |
7 |
12 |
1 |
4 |
7 |
12 |
1 |
4 |
1 |
4 |
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
1 |
4 |
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
1 |
4 |
▼优质解答
答案和解析
(1)
×99+
,
=
×(99+1),
=
×100,
=12;
(2)7÷
+9×
,
=7×
+9×
,
=(7+9)×
,
=16×
,
=20;
(3)48×(
+
),
=48×
+48×
,
=28+12,
=40;
(4)
×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
. (1)
×99+
,
=
×(99+1),
=
×100,
=12;
(2)7÷
+9×
,
=7×
+9×
,
=(7+9)×
,
=16×
,
=20;
(3)48×(
+
),
=48×
+48×
,
=28+12,
=40;
(4)
×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
. (1)
×99+
,
=
×(99+1),
=
×100,
=12;
(2)7÷
+9×
,
=7×
+9×
,
=(7+9)×
,
=16×
,
=20;
(3)48×(
+
),
=48×
+48×
,
=28+12,
=40;
(4)
×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
. (1)
×99+
,
=
×(99+1),
=
×100,
=12;
(2)7÷
+9×
,
=7×
+9×
,
=(7+9)×
,
=16×
,
=20;
(3)48×(
+
),
=48×
+48×
,
=28+12,
=40;
(4)
×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
3 25 3 3 3 25 25 25 ×99+
,
=
×(99+1),
=
×100,
=12;
(2)7÷
+9×
,
=7×
+9×
,
=(7+9)×
,
=16×
,
=20;
(3)48×(
+
),
=48×
+48×
,
=28+12,
=40;
(4)
×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
3 25 3 3 3 25 25 25 ,
=
×(99+1),
=
×100,
=12;
(2)7÷
+9×
,
=7×
+9×
,
=(7+9)×
,
=16×
,
=20;
(3)48×(
+
),
=48×
+48×
,
=28+12,
=40;
(4)
×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
3 25 3 3 3 25 25 25 ×(99+1),
=
×100,
=12;
(2)7÷
+9×
,
=7×
+9×
,
=(7+9)×
,
=16×
,
=20;
(3)48×(
+
),
=48×
+48×
,
=28+12,
=40;
(4)
×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
3 25 3 3 3 25 25 25 ×100,
=12;
(2)7÷
+9×
,
=7×
+9×
,
=(7+9)×
,
=16×
,
=20;
(3)48×(
+
),
=48×
+48×
,
=28+12,
=40;
(4)
×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
4 5 4 4 4 5 5 5 +9×
,
=7×
+9×
,
=(7+9)×
,
=16×
,
=20;
(3)48×(
+
),
=48×
+48×
,
=28+12,
=40;
(4)
×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
5 4 5 5 5 4 4 4 ,
=7×
+9×
,
=(7+9)×
,
=16×
,
=20;
(3)48×(
+
),
=48×
+48×
,
=28+12,
=40;
(4)
×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
5 4 5 5 5 4 4 4 +9×
,
=(7+9)×
,
=16×
,
=20;
(3)48×(
+
),
=48×
+48×
,
=28+12,
=40;
(4)
×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
5 4 5 5 5 4 4 4 ,
=(7+9)×
,
=16×
,
=20;
(3)48×(
+
),
=48×
+48×
,
=28+12,
=40;
(4)
×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
5 4 5 5 5 4 4 4 ,
=16×
,
=20;
(3)48×(
+
),
=48×
+48×
,
=28+12,
=40;
(4)
×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
5 4 5 5 5 4 4 4 ,
=20;
(3)48×(
+
),
=48×
+48×
,
=28+12,
=40;
(4)
×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
7 12 7 7 7 12 12 12 +
),
=48×
+48×
,
=28+12,
=40;
(4)
×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
1 4 1 1 1 4 4 4 ),
=48×
+48×
,
=28+12,
=40;
(4)
×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
7 12 7 7 7 12 12 12 +48×
,
=28+12,
=40;
(4)
×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
1 4 1 1 1 4 4 4 ,
=28+12,
=40;
(4)
×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
5 11 5 5 5 11 11 11 ×
÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
1 4 1 1 1 4 4 4 ÷
×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
5 11 5 5 5 11 11 11 ×
,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
1 4 1 1 1 4 4 4 ,
=
×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
5 11 5 5 5 11 11 11 ×
×
×
,
=(
×
)×(
×
),
=1×
,
=
.
1 4 1 1 1 4 4 4 ×
×
,
=(
×
)×(
×
),
=1×
,
=
.
11 5 11 11 11 5 5 5 ×
,
=(
×
)×(
×
),
=1×
,
=
.
1 4 1 1 1 4 4 4 ,
=(
×
)×(
×
),
=1×
,
=
.
5 11 5 5 5 11 11 11 ×
)×(
×
),
=1×
,
=
.
11 5 11 11 11 5 5 5 )×(
×
),
=1×
,
=
.
1 4 1 1 1 4 4 4 ×
),
=1×
,
=
.
1 4 1 1 1 4 4 4 ),
=1×
,
=
.
1 16 1 1 1 16 16 16 ,
=
.
1 16 1 1 1 16 16 16 .
(1)
=
=
=12; (2)7÷
=7×
=(7+9)×
=16×
=20; (3)48×(
=48×
=28+12, =40; (4)
=
=(
=1×
=
|
3 |
25 |
3 |
25 |
=
3 |
25 |
=
3 |
25 |
=12;
(2)7÷
4 |
5 |
5 |
4 |
=7×
5 |
4 |
5 |
4 |
=(7+9)×
5 |
4 |
=16×
5 |
4 |
=20;
(3)48×(
7 |
12 |
1 |
4 |
=48×
7 |
12 |
1 |
4 |
=28+12,
=40;
(4)
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
3 |
25 |
3 |
25 |
=
3 |
25 |
=
3 |
25 |
=12;
(2)7÷
4 |
5 |
5 |
4 |
=7×
5 |
4 |
5 |
4 |
=(7+9)×
5 |
4 |
=16×
5 |
4 |
=20;
(3)48×(
7 |
12 |
1 |
4 |
=48×
7 |
12 |
1 |
4 |
=28+12,
=40;
(4)
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
3 |
25 |
3 |
25 |
=
3 |
25 |
=
3 |
25 |
=12;
(2)7÷
4 |
5 |
5 |
4 |
=7×
5 |
4 |
5 |
4 |
=(7+9)×
5 |
4 |
=16×
5 |
4 |
=20;
(3)48×(
7 |
12 |
1 |
4 |
=48×
7 |
12 |
1 |
4 |
=28+12,
=40;
(4)
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
3 |
25 |
3 |
25 |
=
3 |
25 |
=
3 |
25 |
=12;
(2)7÷
4 |
5 |
5 |
4 |
=7×
5 |
4 |
5 |
4 |
=(7+9)×
5 |
4 |
=16×
5 |
4 |
=20;
(3)48×(
7 |
12 |
1 |
4 |
=48×
7 |
12 |
1 |
4 |
=28+12,
=40;
(4)
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
3 |
25 |
3 |
25 |
=
3 |
25 |
=
3 |
25 |
=12;
(2)7÷
4 |
5 |
5 |
4 |
=7×
5 |
4 |
5 |
4 |
=(7+9)×
5 |
4 |
=16×
5 |
4 |
=20;
(3)48×(
7 |
12 |
1 |
4 |
=48×
7 |
12 |
1 |
4 |
=28+12,
=40;
(4)
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
3 |
25 |
=
3 |
25 |
=
3 |
25 |
=12;
(2)7÷
4 |
5 |
5 |
4 |
=7×
5 |
4 |
5 |
4 |
=(7+9)×
5 |
4 |
=16×
5 |
4 |
=20;
(3)48×(
7 |
12 |
1 |
4 |
=48×
7 |
12 |
1 |
4 |
=28+12,
=40;
(4)
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
3 |
25 |
=
3 |
25 |
=12;
(2)7÷
4 |
5 |
5 |
4 |
=7×
5 |
4 |
5 |
4 |
=(7+9)×
5 |
4 |
=16×
5 |
4 |
=20;
(3)48×(
7 |
12 |
1 |
4 |
=48×
7 |
12 |
1 |
4 |
=28+12,
=40;
(4)
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
3 |
25 |
=12;
(2)7÷
4 |
5 |
5 |
4 |
=7×
5 |
4 |
5 |
4 |
=(7+9)×
5 |
4 |
=16×
5 |
4 |
=20;
(3)48×(
7 |
12 |
1 |
4 |
=48×
7 |
12 |
1 |
4 |
=28+12,
=40;
(4)
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
4 |
5 |
5 |
4 |
=7×
5 |
4 |
5 |
4 |
=(7+9)×
5 |
4 |
=16×
5 |
4 |
=20;
(3)48×(
7 |
12 |
1 |
4 |
=48×
7 |
12 |
1 |
4 |
=28+12,
=40;
(4)
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
5 |
4 |
=7×
5 |
4 |
5 |
4 |
=(7+9)×
5 |
4 |
=16×
5 |
4 |
=20;
(3)48×(
7 |
12 |
1 |
4 |
=48×
7 |
12 |
1 |
4 |
=28+12,
=40;
(4)
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
5 |
4 |
5 |
4 |
=(7+9)×
5 |
4 |
=16×
5 |
4 |
=20;
(3)48×(
7 |
12 |
1 |
4 |
=48×
7 |
12 |
1 |
4 |
=28+12,
=40;
(4)
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
5 |
4 |
=(7+9)×
5 |
4 |
=16×
5 |
4 |
=20;
(3)48×(
7 |
12 |
1 |
4 |
=48×
7 |
12 |
1 |
4 |
=28+12,
=40;
(4)
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
5 |
4 |
=16×
5 |
4 |
=20;
(3)48×(
7 |
12 |
1 |
4 |
=48×
7 |
12 |
1 |
4 |
=28+12,
=40;
(4)
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
5 |
4 |
=20;
(3)48×(
7 |
12 |
1 |
4 |
=48×
7 |
12 |
1 |
4 |
=28+12,
=40;
(4)
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
7 |
12 |
1 |
4 |
=48×
7 |
12 |
1 |
4 |
=28+12,
=40;
(4)
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
1 |
4 |
=48×
7 |
12 |
1 |
4 |
=28+12,
=40;
(4)
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
7 |
12 |
1 |
4 |
=28+12,
=40;
(4)
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
1 |
4 |
=28+12,
=40;
(4)
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
5 |
11 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
1 |
4 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
5 |
11 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
1 |
4 |
=
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
5 |
11 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
1 |
4 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
11 |
5 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
1 |
4 |
=(
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
5 |
11 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
11 |
5 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
1 |
4 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
1 |
4 |
=1×
1 |
16 |
=
1 |
16 |
1 |
16 |
=
1 |
16 |
1 |
16 |
看了 计算下列各题,能简算的要简算...的网友还看了以下:
答得好+200分哦!机会难得!六.在下列各式中填上合适的运算符号使等式成立(1)1()2()3()4 2020-03-30 …
若进栈序列为1,2,3,4,5,6,且进栈和出栈可以穿插进行,则不可能出现的出栈序列为().3,2 2020-06-28 …
23.一棵前序序列为1,2,3,4的二叉树,其中序序列不可能是().1.一棵前序序列为1,2,3, 2020-07-08 …
已知X^2+Y^2=1,下列结论中正确的是1.曲线X^4+Y^2=1关于X轴对称2.曲线X^4+Y 2020-07-15 …
(1)由数列1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,...前4项的值,推测 2020-07-19 …
将正整数依次按如表规律排成4列,根据表中的排列规律,数2016应在()第1列第2列第3列第4列第1行 2020-11-08 …
将正整数依次按下表规律排成4列,根据表中的排列规律,数2014应在()第1列第2列第3列第4列第1行 2020-11-08 …
神奇的数列规律,你能想出来吗?1,2,1,2,3,2,1,2,3,4,3,2,1,2,3,4,5,4 2020-11-23 …
对称大于1的一位数的自乘,可以用对称的数字列成连加法表示.2×2=1+2+13×3=1+2+3+2+ 2020-11-25 …
一个栈的入栈序列是{1,2,3,4,5},在各种出栈序列中,以3,4开头的输出序列可能是______ 2020-12-05 …