早教吧作业答案频道 -->数学-->
已知平面内两点P,Q的坐标分别为(-2,4),(2,1),求→PQ的单位向量→a0;若R(6,-2),求证P、Q、R三点共线还有几道.已知向量→a=(a,-1),→b=(5,2),求2→a+3→b的坐标及模.梯形ABCD中,AB‖CD,AB=2CD,M、N分别是BC和
题目详情
已知平面内两点P,Q的坐标分别为(-2,4),(2,1),求→PQ的单位向量→a0;若R(6,-2),求证P、Q、R三点共线
还有几道.已知向量→a=(a,-1),→b=(5,2),求2→a+3→b的坐标及模.
梯形ABCD中,AB‖CD,AB=2CD,M、N分别是BC和AB的中点,设→AB=→a,→NM=→b,则→AD=?
还有几道.已知向量→a=(a,-1),→b=(5,2),求2→a+3→b的坐标及模.
梯形ABCD中,AB‖CD,AB=2CD,M、N分别是BC和AB的中点,设→AB=→a,→NM=→b,则→AD=?
▼优质解答
答案和解析
(1)已知平面内两点P,Q的坐标分别为(-2,4),(2,1),求→PQ的单位向量→a0;若R(6,-2),求证P、Q、R三点共线
解析:∵平面内两点P,Q的坐标分别为(-2,4),(2,1)
∴向量PQ=(4,-3) ,|向量PQ|=5
向量a0=向量PQ/|向量PQ|=(4/5,-3/5)
又R(6,-2), ∴向量QR=(4,-3)
向量QR/向量PQ=1
∴P、Q、R三点共线
(2)已知向量→a=(a,-1),→b=(5,2),求2→a+3→b的坐标及模.
解析:∵向量a=(a,-1),向量b=(5,2)
∴2向量a=(2a,-2), 3向量b=(15,6)
2向量a+3向量b =(2a+15,4)
|2向量a+3向量b |=√[(2a+15)^2+16]
(3)梯形ABCD中,AB‖CD,AB=2CD,M、N分别是BC和AB的中点,设→AB=→a,→NM=→b,则→AD=?
解析:∵梯形ABCD中,AB‖CD,AB=2CD,M、N分别是BC和AB的中点
∴向量AD=向量NC
向量NC+向量NB=向量NC+1/2向量AB =2向量NM
∴向量NC=2向量NM-1/2向量AB
∴向量AD=2向量b-1/2向量a
解析:∵平面内两点P,Q的坐标分别为(-2,4),(2,1)
∴向量PQ=(4,-3) ,|向量PQ|=5
向量a0=向量PQ/|向量PQ|=(4/5,-3/5)
又R(6,-2), ∴向量QR=(4,-3)
向量QR/向量PQ=1
∴P、Q、R三点共线
(2)已知向量→a=(a,-1),→b=(5,2),求2→a+3→b的坐标及模.
解析:∵向量a=(a,-1),向量b=(5,2)
∴2向量a=(2a,-2), 3向量b=(15,6)
2向量a+3向量b =(2a+15,4)
|2向量a+3向量b |=√[(2a+15)^2+16]
(3)梯形ABCD中,AB‖CD,AB=2CD,M、N分别是BC和AB的中点,设→AB=→a,→NM=→b,则→AD=?
解析:∵梯形ABCD中,AB‖CD,AB=2CD,M、N分别是BC和AB的中点
∴向量AD=向量NC
向量NC+向量NB=向量NC+1/2向量AB =2向量NM
∴向量NC=2向量NM-1/2向量AB
∴向量AD=2向量b-1/2向量a
看了 已知平面内两点P,Q的坐标分...的网友还看了以下:
急!已知曲线C上的动点P到点F(2,0)的距离比到直线X=-1距离大1(1),求曲线C的方程(2) 2020-05-14 …
已知点p(x0,y0)在曲线f(x,y)=0上,也在曲线g(x,y)=0上.求证:P在曲线f(x, 2020-05-21 …
若p>0,q>0,且p的立方+q的立方=2,求证p+q≤2最好用命题和反证法证明 2020-06-02 …
20分帮忙解决一道数学问题!PA垂直平面ABCD,ABCD为矩形,PA=PB=1,PD与平面ABC 2020-06-07 …
已知P(A)=0.3,P(B)=0.5,P(AB)=0.15,验证P(B┃A)=P(B),P(B┃ 2020-06-12 …
1,P(A)=0.4P(AB)=0.2P(A|B)+P(A非|B非)=1求P(A并B)2,证明若P 2020-06-14 …
概率论与数理统计里的一道证明题设本题涉及的事件均有意义,设A,B都是事件.1.已知P(A)>0,证 2020-06-18 …
已知P(A)=0.3,P(B)=0.5,P(AB)=0.15,验证:P(B|A)=P(B),P(B 2020-06-22 …
已知A(0,a)、B(0,b)、C(m,b),且(a-4)²+|b+3|=0,S△ABC=14.1 2020-07-22 …
A1,A2和B是任意事件,且0<P(B)<1,P((A1∪A2)/B)=P(A1/B)+P(A2/B 2020-10-31 …