早教吧作业答案频道 -->数学-->
已知平面内两点P,Q的坐标分别为(-2,4),(2,1),求→PQ的单位向量→a0;若R(6,-2),求证P、Q、R三点共线还有几道.已知向量→a=(a,-1),→b=(5,2),求2→a+3→b的坐标及模.梯形ABCD中,AB‖CD,AB=2CD,M、N分别是BC和
题目详情
已知平面内两点P,Q的坐标分别为(-2,4),(2,1),求→PQ的单位向量→a0;若R(6,-2),求证P、Q、R三点共线
还有几道.已知向量→a=(a,-1),→b=(5,2),求2→a+3→b的坐标及模.
梯形ABCD中,AB‖CD,AB=2CD,M、N分别是BC和AB的中点,设→AB=→a,→NM=→b,则→AD=?
还有几道.已知向量→a=(a,-1),→b=(5,2),求2→a+3→b的坐标及模.
梯形ABCD中,AB‖CD,AB=2CD,M、N分别是BC和AB的中点,设→AB=→a,→NM=→b,则→AD=?
▼优质解答
答案和解析
(1)已知平面内两点P,Q的坐标分别为(-2,4),(2,1),求→PQ的单位向量→a0;若R(6,-2),求证P、Q、R三点共线
解析:∵平面内两点P,Q的坐标分别为(-2,4),(2,1)
∴向量PQ=(4,-3) ,|向量PQ|=5
向量a0=向量PQ/|向量PQ|=(4/5,-3/5)
又R(6,-2), ∴向量QR=(4,-3)
向量QR/向量PQ=1
∴P、Q、R三点共线
(2)已知向量→a=(a,-1),→b=(5,2),求2→a+3→b的坐标及模.
解析:∵向量a=(a,-1),向量b=(5,2)
∴2向量a=(2a,-2), 3向量b=(15,6)
2向量a+3向量b =(2a+15,4)
|2向量a+3向量b |=√[(2a+15)^2+16]
(3)梯形ABCD中,AB‖CD,AB=2CD,M、N分别是BC和AB的中点,设→AB=→a,→NM=→b,则→AD=?
解析:∵梯形ABCD中,AB‖CD,AB=2CD,M、N分别是BC和AB的中点
∴向量AD=向量NC
向量NC+向量NB=向量NC+1/2向量AB =2向量NM
∴向量NC=2向量NM-1/2向量AB
∴向量AD=2向量b-1/2向量a
解析:∵平面内两点P,Q的坐标分别为(-2,4),(2,1)
∴向量PQ=(4,-3) ,|向量PQ|=5
向量a0=向量PQ/|向量PQ|=(4/5,-3/5)
又R(6,-2), ∴向量QR=(4,-3)
向量QR/向量PQ=1
∴P、Q、R三点共线
(2)已知向量→a=(a,-1),→b=(5,2),求2→a+3→b的坐标及模.
解析:∵向量a=(a,-1),向量b=(5,2)
∴2向量a=(2a,-2), 3向量b=(15,6)
2向量a+3向量b =(2a+15,4)
|2向量a+3向量b |=√[(2a+15)^2+16]
(3)梯形ABCD中,AB‖CD,AB=2CD,M、N分别是BC和AB的中点,设→AB=→a,→NM=→b,则→AD=?
解析:∵梯形ABCD中,AB‖CD,AB=2CD,M、N分别是BC和AB的中点
∴向量AD=向量NC
向量NC+向量NB=向量NC+1/2向量AB =2向量NM
∴向量NC=2向量NM-1/2向量AB
∴向量AD=2向量b-1/2向量a
看了 已知平面内两点P,Q的坐标分...的网友还看了以下:
概率论的问题已知P(A)=1/2,P(B)=1/3,P(C)=1/5,P(AB)=1/10,P(A 2020-04-12 …
数论题目(信息安全数学基础),thanksn是合数,p是n的素因数,证明:若p^a整除n,但p^( 2020-05-22 …
指出下列各组条件中,条件p是结论q的什么条件(1)p:ab>o,q:/a/>/b/(4)p:整数a 2020-06-12 …
已知p为素数,且g^x=1(modp^a),求证g^(px)=1(modp^(a+1)),注意x不 2020-06-18 …
已知P(A)=1/2,P(B)=1/3,P(C)=1/5,P(AB)=1/10,P(AC)=1/1 2020-06-22 …
概率应用题已知P(A)=1/2,P(B)=1/3.求P(B/A-)那个横杠是非A的意思已知P(A) 2020-07-08 …
概率论基础问题(因为无法输入A的逆事件符号,只好用a来表示,即a=1-A)设A,B满足P(A)=1/ 2020-11-29 …
下列结论正确的是?A)若P(AB)=0则A,B互不相容B)若P(A)=1P(B)=1则A,B相互独立 2020-12-01 …
大学概率课后习题提问!已知P(A)=1/2,若P(AB)=1/8,求P(A-B)(A乘以杠B的意思) 2020-12-13 …
求助一道概率论的题已知P(A)=1/2,P(B)=1/3,P(C)=1/5,P(AB)=1/10,P 2020-12-13 …