早教吧作业答案频道 -->数学-->
一个圆系方程的证明:如何证明过定点p(x0,y0)的圆系方程(x-x0)^2+(y-y0)^2+m(x-x0)+n(y-y0)=0麻烦写出详细过程和思路.关键点:将圆的方程表示为上述形式有何意义,为什么要写成(x-x0)^2+(y-y0)^2+m
题目详情
一个圆系方程的证明:
如何证明 过定点p(x0,y0)的 圆系方程
(x-x0)^2+(y-y0)^2+m(x-x0)+n(y-y0)=0
麻烦写出详细过程和思路.
关键点:将圆的方程表示为上述形式有何意义,为什么要写成(x-x0)^2+(y-y0)^2+m(x-x0)+n(y-y0)
如何证明 过定点p(x0,y0)的 圆系方程
(x-x0)^2+(y-y0)^2+m(x-x0)+n(y-y0)=0
麻烦写出详细过程和思路.
关键点:将圆的方程表示为上述形式有何意义,为什么要写成(x-x0)^2+(y-y0)^2+m(x-x0)+n(y-y0)
▼优质解答
答案和解析
圆的方程为形式:x^2+y^2+dx+ey+f=0
过定点(x0,y0),则有:x0^2+y0^2+dx0+ey0+f=0
因此有:f=-(x0^2+y0^2+dx0+ey0)
即圆族为:x^2+y^2+dx+ey-(x0^2+y0^2+dx0+ey0)=0
配方得:(x-x0)^2+(y-y0)^2+(d-2x0)(x-x0)+(e-2y0)(y-y0)=0
此即为形式:(x-x0)^2+(y-y0)^2+m(x-x0)+n(y-y0)=0.
这样写的意义即可明显的看出(x0,y0)满足该圆,而且此形式为一个圆.
过定点(x0,y0),则有:x0^2+y0^2+dx0+ey0+f=0
因此有:f=-(x0^2+y0^2+dx0+ey0)
即圆族为:x^2+y^2+dx+ey-(x0^2+y0^2+dx0+ey0)=0
配方得:(x-x0)^2+(y-y0)^2+(d-2x0)(x-x0)+(e-2y0)(y-y0)=0
此即为形式:(x-x0)^2+(y-y0)^2+m(x-x0)+n(y-y0)=0.
这样写的意义即可明显的看出(x0,y0)满足该圆,而且此形式为一个圆.
看了 一个圆系方程的证明:如何证明...的网友还看了以下:
已知点P是抛物线Y=(1/4)X(2)+1上的任意一点,记点P到X轴的距离为d1,P与点F(0,2 2020-04-05 …
等腰三角形ABC的底边长为8CM,腰长为5CM,一动点P在底边上从B向C以0.25CM/S的速度移 2020-05-19 …
pp是什么意思ant是什么意思我问的是英语语法呐……老说p点p点请问是神马意思呐谢谢咯 2020-07-03 …
已知点O(0,0)和点B(m,0)(m>0),动点P到O,B的距离比为2∶1,求P点轨迹和P点在什 2020-07-22 …
如果二元函数再某一点P沿任意方向的方向导数存在是否可以推断出函数在P点的偏导数连续?可以的话为什么 2020-07-25 …
随机变量相互独立的充分必要条件一个公式无法理解那个P后面的下标跟着一个点是什么含义啊我是文科生从来 2020-07-29 …
聚点的概念是平面上p点的空心领域,但是既然聚点可以是边界点也可以是内点,为什么不就用p的领域而用空 2020-07-31 …
如图,已知点P是抛物线y=14x2+1上的任意一点,记点P到X轴距离为d1,点P与点F(0,2)的距 2020-10-31 …
反比例函数中的面积最值问题已知:A(-3,0),B(0,-4),点P为双曲线y=12/x(x>0)上 2020-11-24 …
英文逻辑学里面-P是什么意思(P表示观点命题)例如思维三律里的LawofNon-contradict 2020-12-07 …