早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系中Rt△AOB≌Rt△CDA,且A(-1,0),B(0,2)抛物线y=ax2+ax-2经过点C.(1)求抛物线的解析式;(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ为正
题目详情
如图,在平面直角坐标系中Rt△AOB≌Rt△CDA,且A(-1,0),B(0,2)抛物线y=ax2+ax-2经过点C.
(1)求抛物线的解析式;
(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ为正方形?若存在,求点P、Q的坐标;
若不存在,请说明理由.
(1)求抛物线的解析式;
(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ为正方形?若存在,求点P、Q的坐标;

▼优质解答
答案和解析
(1)由Rt△AOB≌Rt△CDA,得OD=2+1=3,CD=1
∴C点坐标为(-3,1),
∴抛物线经过点C,
∴1=a(-3)2+a(-3)-2,
∴a=
,
∴抛物线的解析式为y=
x2+
x-2;
(2)在抛物线(对称轴的右侧)上存在点P、Q,使四边形ABPQ是正方形.
以AB为边在AB的右侧作正方形ABPQ,过P作PE⊥OB于E,QG⊥x轴于G,可证△PBE≌△AQG≌△BAO,

∴PE=AG=BO=2,BE=QG=AO=1,
∴P点坐标为(2,1),Q点坐标为(1,-1).
由(1)抛物线y=
x2+
x-2,
当x=2时,y=1;当x=1时,y=-1.
∴P、Q在抛物线上.
故在抛物线(对称轴的右侧)上存在点P(2,1)、Q(1,-1),使四边形ABPQ是正方形.
∴C点坐标为(-3,1),
∴抛物线经过点C,
∴1=a(-3)2+a(-3)-2,
∴a=
1 |
2 |
∴抛物线的解析式为y=
1 |
2 |
1 |
2 |
(2)在抛物线(对称轴的右侧)上存在点P、Q,使四边形ABPQ是正方形.
以AB为边在AB的右侧作正方形ABPQ,过P作PE⊥OB于E,QG⊥x轴于G,可证△PBE≌△AQG≌△BAO,

∴PE=AG=BO=2,BE=QG=AO=1,
∴P点坐标为(2,1),Q点坐标为(1,-1).
由(1)抛物线y=
1 |
2 |
1 |
2 |
当x=2时,y=1;当x=1时,y=-1.
∴P、Q在抛物线上.
故在抛物线(对称轴的右侧)上存在点P(2,1)、Q(1,-1),使四边形ABPQ是正方形.
看了 如图,在平面直角坐标系中Rt...的网友还看了以下:
因式分解a3(b-c)+b3(c-a)+c3(a-b)如果用待定系数法解,得a3(b-c)+b3( 2020-05-16 …
2010河南中招数学试最后题最后一问解析,急!23.(11分)在平面直角坐标系中,已知抛物线经过A 2020-05-17 …
分式方程请观察下列方程和它们的根请观察下列方程和它们的根:x+1/x=c+1/c的解是x=c或x= 2020-06-06 …
对孝敬父母,理解不正确的是()A.父母应多体谅子女B.把孝敬父母落实到生活中的点滴小事上C.不仅需 2020-07-01 …
关于x的方程x+1/x=c+1/c的解是x1=c,x2=1/c;x-1/x=c-c/1(即x+(- 2020-07-21 …
matlab如何求解如下的微分方程?有一组电容电压C-V数据求解这组数据所构成的曲线上的满足如下方 2020-07-23 …
求解抛物线题目已知两定点A(3,2)B(4,7)及抛物线C的方程是y2=4x.(1)试在抛物线C上 2020-07-25 …
关于X的方程:x+1/x=c+1/c的解是x1=c,x2=1/cx+2/x=c+2/c的解是x1= 2020-07-29 …
心理换位、与人为善的实质是[]A.各人自扫门前雪,休管他人瓦上霜B.设身处地为他人着想,即想人所想, 2020-11-21 …
这里有个问题我不理解的`取两个验电器A和B,在B上装有一个几乎封闭的空心金属筒C,使C带电,B的箔片 2020-12-04 …