早教吧作业答案频道 -->数学-->
如图1,在正方形ABCD中,M是BC边上任意一点,P是BC延长线上一点,N是角DCP的平分线一点.若角AMN=90°,求
题目详情
如图1,在正方形ABCD中,M是BC边上任意一点,P是BC延长线上一点,N是角DCP的平分线一点.若角AMN=90°,求
▼优质解答
答案和解析
(1)由题中条件可得∠AEM=∠MCN=135°,再由两角夹一边即可判定三角形全等;
(2)还是利用两角夹一边证明其全等,证明方法同(1).(1)∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=45°,
∴∠AEM=135°,
∵CN平分∠DCP,
∴∠PCN=45°,
∴∠AEM=∠MCN=135°
在△AEM和△MCN中:
∵ {∠AEM=∠MCNAE=MC∠EAM=∠CMN
∴△AEM≌△MCN,
∴AM=MN;
(2)仍然成立.
在边AB上截取AE=MC,连接ME,
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=60°,
∴∠ACP=120°,
∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=60°,
∴∠AEM=120°,
∵CN平分∠ACP,
∴∠PCN=60°,
∴∠AEM=∠MCN=120°,
∵∠CMN=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠BAM,
∴△AEM≌△MCN,
∴AM=MN.
(2)还是利用两角夹一边证明其全等,证明方法同(1).(1)∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=45°,
∴∠AEM=135°,
∵CN平分∠DCP,
∴∠PCN=45°,
∴∠AEM=∠MCN=135°
在△AEM和△MCN中:
∵ {∠AEM=∠MCNAE=MC∠EAM=∠CMN
∴△AEM≌△MCN,
∴AM=MN;
(2)仍然成立.
在边AB上截取AE=MC,连接ME,
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=60°,
∴∠ACP=120°,
∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=60°,
∴∠AEM=120°,
∵CN平分∠ACP,
∴∠PCN=60°,
∴∠AEM=∠MCN=120°,
∵∠CMN=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠BAM,
∴△AEM≌△MCN,
∴AM=MN.
看了 如图1,在正方形ABCD中,...的网友还看了以下:
已知锐角三角形ABC,设其三条边的长分别是a,b,c,且a小于b小于c,一边分别落在a,b,c边上 2020-05-13 …
已知关于X的方程x^2 -(2k+1)X+4(K-1/2)=0 (1)试说明 无论K取何值 这个方 2020-05-13 …
在三角形ABC中,∠A、B、C所队的边长为a、b、c、若∠C=120度,c=√2a.边a、b的大小 2020-05-13 …
求斜角三角形的边长已知三角形一边a=50,b=20,角B=30度,求边C等于多长,时间太长,忘了公 2020-05-24 …
甲数的四分之一与乙数的三分之二相等,甲数与乙数()a成正比例,b不成比例在()中,a和b成正比例a 2020-06-03 …
这是初3的.要用初3的知识回答.题如下关于X的方程X的平方-(K+2)X+2K=0关于X的方程X的 2020-06-06 …
abcd四人分别坐在1234号椅子有人说b坐在c旁边,a坐在b和c中间,b没有坐在3号椅子上.已知 2020-06-16 …
下列现象不可能出现在宋代的是()A.在南方能吃到当地产的占城稻米饭B.在四川经商时携带纸币C.一边 2020-06-28 …
某施工地在道路拓宽施工时遇到这样一个问题,马路旁边原有一个面积为100平方米,周长为80米的三角形 2020-07-03 …
如图,要在一面靠墙(墙长11米)的空地上,用长为16米的篱笆围成一个矩形花圃(靠墙一边不超过墙长) 2020-07-03 …