早教吧作业答案频道 -->数学-->
如图点D在反比例函数y=k/x(k>0)的图像上,点C在x轴的正半轴上且坐标为(4,O),△ODC是以CO为斜边的等腰如图点D在反比例函数y=k/x(k>0)的图像上,点C在x轴的正半轴上且标为(4,O),△ODC是以CO为斜
题目详情
如图点D在反比例函数y=k/x(k>0)的图像上,点C在x轴的正半轴上且坐标为(4,O),△ODC是以CO为斜边的等腰
如图点D在反比例函数y=k/x(k>0)的图像上,点C在x轴的正半轴上且标为(4,O),△ODC是以CO为斜边的等腰直角形.
(1)求反比例函数的解析式;
(2)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,连接OB,将OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F,求直线OF的长
(最右边的X轴上的点打错了,是C不是D)
(3)直线y=-x-+3交x轴于M点,交y轴于N点,点P是双曲线y=k/x(k>0)上的一动点,PQ⊥x轴于Q点,PR⊥y轴月R点,PQ,PR与直线MN交与H,G两点,给出下列两个结论①△PGH的面积不变,②MG×NH的值不变.其中有且只有一个结论是正确的,请你选择并证明求值.
如图点D在反比例函数y=k/x(k>0)的图像上,点C在x轴的正半轴上且标为(4,O),△ODC是以CO为斜边的等腰直角形.
(1)求反比例函数的解析式;
(2)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,连接OB,将OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F,求直线OF的长
(最右边的X轴上的点打错了,是C不是D)
(3)直线y=-x-+3交x轴于M点,交y轴于N点,点P是双曲线y=k/x(k>0)上的一动点,PQ⊥x轴于Q点,PR⊥y轴月R点,PQ,PR与直线MN交与H,G两点,给出下列两个结论①△PGH的面积不变,②MG×NH的值不变.其中有且只有一个结论是正确的,请你选择并证明求值.
▼优质解答
答案和解析
如图点D在反比例函数y=k/x(k>0)的图像上,点C在x轴的正半轴上且标为(4,O),△ODC是以CO为斜边的等腰直角形.
(1)求反比例函数的解析式;
(2)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,连接OB,将OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F,求直线OF的长
(3)直线y=-x-+3交x轴于M点,交y轴于N点,点P是双曲线y=k/x(k>0)上的一动点,PQ⊥x轴于Q点,PR⊥y轴月R点,PQ,PR与直线MN交与H,G两点,给出下列两个结论①△PGH的面积不变,②MG×NH的值不变.其中有且只有一个结论是正确的,请你选择并证明求值.
(1)解析:∵D为函数y=k/x(k>0)上一点,O(0,0),C(4,0),△ODC是以CO为斜边的等腰直角形
设D(x,y)
|OD|=√(x^2+y^2),|OC|=√[(x-4)^2+y^2)
∴x^2+y^2= (x-4)^2+y^2==>x=2
|OD|=4/√2=2√2==>y=2==>y=k/2=2==>k=4
∴反比例函数y=4/x
(2)解析:∵反比例函数y=4/x,AB⊥X轴,BE⊥Y轴,∴B(1,4),A(1,0),E(0,4)
∵⊿ABO与⊿A’BO关于直线OB对称
∴⊿ABO≌⊿A’BO==>∠OBA=∠OBA’,∠BOA=∠BOA’
延长BA’交X轴于G,设OG=x
∴∠OBA=∠OBA’
由角平分线性质,OG/OA=BG/AB=x==>BG=4x
∴BG^2-AB^2+AG^2==>16x^2=(x+1)^2+16==>x=17/15
∵⊿ABG∽⊿OFG
∴OF/AB=GO/GA
∴OF=GO*AB/GA=17/15*4/(17/15+1)=17/8
(3)证明:∵直线y=3-x交X轴于M(3,0),交Y轴于N(0,3),点P是双曲线y=k/x(k>0)上的一动点,PQ⊥x轴于Q点,PR⊥y轴月R点,PQ,PR与直线MN交与H,G两点
设P(x0,4/x0)
∴H(x0,3-x0),G((3x0-4)/x0,4/x0)
|MG|^2=(3x0-4)/x0-3)^2+(4/x0)^2=32/x0^2
|NH|^2=(x0)^2+(3-3+x0)^2=2x0^2
∴|MG|*|NH|=8
∴MG×NH的值不变
(1)求反比例函数的解析式;
(2)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,连接OB,将OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F,求直线OF的长
(3)直线y=-x-+3交x轴于M点,交y轴于N点,点P是双曲线y=k/x(k>0)上的一动点,PQ⊥x轴于Q点,PR⊥y轴月R点,PQ,PR与直线MN交与H,G两点,给出下列两个结论①△PGH的面积不变,②MG×NH的值不变.其中有且只有一个结论是正确的,请你选择并证明求值.
(1)解析:∵D为函数y=k/x(k>0)上一点,O(0,0),C(4,0),△ODC是以CO为斜边的等腰直角形
设D(x,y)
|OD|=√(x^2+y^2),|OC|=√[(x-4)^2+y^2)
∴x^2+y^2= (x-4)^2+y^2==>x=2
|OD|=4/√2=2√2==>y=2==>y=k/2=2==>k=4
∴反比例函数y=4/x
(2)解析:∵反比例函数y=4/x,AB⊥X轴,BE⊥Y轴,∴B(1,4),A(1,0),E(0,4)
∵⊿ABO与⊿A’BO关于直线OB对称
∴⊿ABO≌⊿A’BO==>∠OBA=∠OBA’,∠BOA=∠BOA’
延长BA’交X轴于G,设OG=x
∴∠OBA=∠OBA’
由角平分线性质,OG/OA=BG/AB=x==>BG=4x
∴BG^2-AB^2+AG^2==>16x^2=(x+1)^2+16==>x=17/15
∵⊿ABG∽⊿OFG
∴OF/AB=GO/GA
∴OF=GO*AB/GA=17/15*4/(17/15+1)=17/8
(3)证明:∵直线y=3-x交X轴于M(3,0),交Y轴于N(0,3),点P是双曲线y=k/x(k>0)上的一动点,PQ⊥x轴于Q点,PR⊥y轴月R点,PQ,PR与直线MN交与H,G两点
设P(x0,4/x0)
∴H(x0,3-x0),G((3x0-4)/x0,4/x0)
|MG|^2=(3x0-4)/x0-3)^2+(4/x0)^2=32/x0^2
|NH|^2=(x0)^2+(3-3+x0)^2=2x0^2
∴|MG|*|NH|=8
∴MG×NH的值不变
看了 如图点D在反比例函数y=k/...的网友还看了以下:
如图,pa,pb是圆o的切线,cd切圆o于e,三角形pdc的周长为12,角apb为60度,求(1)p 2020-03-31 …
(1)割线AC与圆O相交于B,C两点,E是弧BC的中点,D是圆O上一点,若角EDA=角AMD证:A 2020-05-13 …
点A、B、C在圆O上,AB是圆O的内接正十边形的一条边,BC是圆O的内接正十五边形的一边,则以AC 2020-05-14 …
脂肪中的h与o的比值比糖类中的高对吗 2020-05-14 …
如图,在△ABC中,以AB为直径作⊙O交BC于点D,DE交AC于E.(1)若AB=AC,DE⊥AC 2020-05-16 …
O(∩_∩)O哈哈~O(∩_∩)O~(*^__^*)嘻嘻……那个可爱哦?对了撒~大家有一些可爱的网 2020-05-17 …
根据拼音写汉字。慈溪,多年不见的一场大雪之后,大地一片红zhāng素裹,润如油gāo的三北大地一时 2020-05-17 …
在圆O上任取A,B,C三点,分别连接AB,BC,CA,则△ABC叫做圆O的圆O交做△ABC的,点O 2020-05-17 …
如图,AC是⊙O的直径,PA,PB是⊙O的切线,A,B为切点,AB=6,PA=5.求:(1)⊙O的 2020-05-19 …
如图,PC是⊙O的切线,切点为C,PAB为⊙O的割线,交⊙O于点A、B,PC=2,PA=1,则PB 2020-05-20 …