早教吧作业答案频道 -->数学-->
函数问题一、简述函数的四条简单性质,二、求函数自然定义域中注意的问题.三、什么是初等函数.基本初等函数有哪些?四、什么是无穷大量?什么是无穷小量?无穷大与无穷小的关系是什么?五
题目详情
函数问题
一、简述函数的四条简单性质,
二、求函数自然定义域中注意的问题.
三、什么是初等函数.基本初等函数有哪些?
四、什么是无穷大量?什么是无穷小量?无穷大与无穷小的关系是什么?
五、求函数极限的方法有哪些?
一、简述函数的四条简单性质,
二、求函数自然定义域中注意的问题.
三、什么是初等函数.基本初等函数有哪些?
四、什么是无穷大量?什么是无穷小量?无穷大与无穷小的关系是什么?
五、求函数极限的方法有哪些?
▼优质解答
答案和解析
一、①有界性②单调性③奇偶性④周期性
二、(1)函数的定义域应写成集合或者区间的形式
(2)函数的定义域是非空的
(3)分段函数是一个函数故分段函数的定义域是各段自变量的范围的并集
(4)由几个函数经过四则运算所得的新函数的定义域是各个函数的定义域的交集
(5) 已知函数f(x)定义域求f【g(x)】的定义域
(6) 已知f【g(x)】的定义域求f(x)定义域
(7) 函数的定义域与函数有意义是有区别的
(8)实际问题中函数的定义域应具有实际意义
三、初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生、并且能用一个解析式表示的函数.
以下六类函数统称为基本初等函数:
(1)常值函数(也称常数函数) y =c(其中c 为常数)
(2)幂函数 y =x a(其中a 为实常数)
(3)指数函数 y =a x(a>0,a≠1)
(4)对数函数 y =logax(a>0,a≠1)
(5)三角函数:正弦函数 y =sinx 余弦函数 y =cosx 正切函数 y =tanx(也记成y =tgx)
余切函数 y =cotx (也记成y =ctgx) 正割函数 y =secx 余割函数 y =cscx
(6)反三角函数:反正弦函数 y =arcsinx 反余弦函数 y =arccosx
反正切函数 y =arctanx 反余切函数 y =arccotx
四、当自变量x无限接近x0(或|x|无限增大)时,函数值|f(x)|无限增大,即f(x)=∞(或f(x)=∞),则称f(x)为x→x0(或x→∞)时的无穷大量 .例如f(x)=是当x→1时的无穷大量,f(n)=n2是当n→∞时的无穷大量.无穷大量的倒数是无穷小量.应该特别注意的是,无论多么大的数都不是无穷大量.
五、(1)利用定义求极限
(2)利用函数的连续性求极限
(3)利用两个重要极限求极限
(4)利用四则运算法则求极限
(5)利用迫敛性求极限
(6)利用归结原则求极限
(7)利用等价无穷小量代换求极限
(8)利用洛比达法则求极限
(9) 利用泰勒公式求极限
(10)用导数的定义求极限
(11)利用定积分求极限
以上问题每个老师的叫法也不不一样,可做参考.
二、(1)函数的定义域应写成集合或者区间的形式
(2)函数的定义域是非空的
(3)分段函数是一个函数故分段函数的定义域是各段自变量的范围的并集
(4)由几个函数经过四则运算所得的新函数的定义域是各个函数的定义域的交集
(5) 已知函数f(x)定义域求f【g(x)】的定义域
(6) 已知f【g(x)】的定义域求f(x)定义域
(7) 函数的定义域与函数有意义是有区别的
(8)实际问题中函数的定义域应具有实际意义
三、初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生、并且能用一个解析式表示的函数.
以下六类函数统称为基本初等函数:
(1)常值函数(也称常数函数) y =c(其中c 为常数)
(2)幂函数 y =x a(其中a 为实常数)
(3)指数函数 y =a x(a>0,a≠1)
(4)对数函数 y =logax(a>0,a≠1)
(5)三角函数:正弦函数 y =sinx 余弦函数 y =cosx 正切函数 y =tanx(也记成y =tgx)
余切函数 y =cotx (也记成y =ctgx) 正割函数 y =secx 余割函数 y =cscx
(6)反三角函数:反正弦函数 y =arcsinx 反余弦函数 y =arccosx
反正切函数 y =arctanx 反余切函数 y =arccotx
四、当自变量x无限接近x0(或|x|无限增大)时,函数值|f(x)|无限增大,即f(x)=∞(或f(x)=∞),则称f(x)为x→x0(或x→∞)时的无穷大量 .例如f(x)=是当x→1时的无穷大量,f(n)=n2是当n→∞时的无穷大量.无穷大量的倒数是无穷小量.应该特别注意的是,无论多么大的数都不是无穷大量.
五、(1)利用定义求极限
(2)利用函数的连续性求极限
(3)利用两个重要极限求极限
(4)利用四则运算法则求极限
(5)利用迫敛性求极限
(6)利用归结原则求极限
(7)利用等价无穷小量代换求极限
(8)利用洛比达法则求极限
(9) 利用泰勒公式求极限
(10)用导数的定义求极限
(11)利用定积分求极限
以上问题每个老师的叫法也不不一样,可做参考.
看了 函数问题一、简述函数的四条简...的网友还看了以下:
中性面为啥没有电流?中性面不是应该是磁通量变化量最小么?然后交流电电压不是和电流差半个相位么?这么说 2020-03-31 …
若a>07a+8|a|=多少若a>07a+8|a|=多少我是这么算的既然A小于0那么7A等与负7A 2020-04-11 …
帮忙看看这作文怎么写阅读下面的这首题为《别等》的小诗,然后按要求作文.别等太阳已经高挂天空别等花以 2020-05-13 …
四个不相同的自然数,最大与最小的差等于4,最小数与最大数的积是个奇数,四个数的和是最小的两位质数, 2020-05-13 …
在家庭电路中只有一个小灯泡,然后并联1个空调,小灯泡会变暗,且总电压会减小,即不等于220V为什么 2020-07-06 …
一个等腰三角形顶角为钝角,则底角的取值范围是先是小于/等于什么,然后是大于/等于什么. 2020-07-10 …
任何数的0次方为什么都等于1?我在做题时遇到了,就有计算器计算(1/2)的0次方,结果等于1,我用 2020-07-19 …
规定一种新的运算:对于不小于三的自然数n,(n)表示不是n的因数的最小自然数,如(5)=2,(8) 2020-07-19 …
若等高距和等高线疏密程度相同时,比例尺越大,坡度越大;比例尺越小,坡度越小.我不太明白,既然等高距 2020-07-21 …
关于x的不等式2x-1的绝对值+x+3的绝对值大于等于2x+4的解集为A,求A答案上是分三个区间来 2020-08-03 …