早教吧 育儿知识 作业答案 考试题库 百科 知识分享

一道高中三角形正弦定理的题在三角形ABC中∠B=60°tanA·tanC=2+更号3已知c上连至C点的高为4倍更号3求三边长搞不懂tanA·tanC=2+更号3这个条件怎么用

题目详情
一道高中三角形正弦定理的题
在三角形ABC中 ∠B=60° tanA·tanC=2+更号3
已知c上连至C点的高为4倍更号3 求三边长
搞不懂tanA·tanC=2+更号3 这个条件怎么用
▼优质解答
答案和解析
B=60
tan(A+C)=tan120=-√3
(tanA+tanC)/(1-tanAtanC)=-√3
(tanA+tanC)/(1-2-√3)=-√3
tanA+tanC=√3+3
tanA*tanC=2+√3
所以tanA和tanC是方程x^2-(√3+3)x+(2+√3)=0的跟
(x-1)[x-(2+√3)]=0
x=1,x=2+√3
假设tanA=1,A=45
C=75
假设高是CD
则sinA=CD/AC
所以√2/2=4√3/AC
b=AC=4√6
a=BC=CD/sinB=4√3/(√3/2)=8
b^2=a^2+c^2-2accosB
96=64+c^2-8c
c>0
c=4+4√3
所以三边是4√6,4+4√3,8
看了 一道高中三角形正弦定理的题在...的网友还看了以下: