早教吧作业答案频道 -->数学-->
已知椭圆X^2/a^2+Y^2/b^2=1上任意一点M(除短轴端点外)与短轴两端点B1,B2的连线分别与X轴交于P,Q两点设任一点M(acost,bsint)短轴两端点A(0,b),B(0,-b)MA交x轴于P(x1,0),MB交x轴于Q(x2,0)b/x1=(b-bsint)/acostx
题目详情
已知椭圆X^2/a^2 +Y^2/b^2 =1上任意一点M(除短轴端点外)与短轴两端点B1,B2的连线分别与X轴交于P,Q两点
设任一点M(acost,bsint)
短轴两端点A(0,b),B(0,-b)
MA交x轴于P(x1,0),MB交x轴于Q(x2,0)
b/x1=(b-bsint)/acost
x1=acost/(1-sint)
bsint/(acost-x2)=b/x2
x2=acost/(1+sint)
|OP|*|OQ|=|x1|*|x2|=a^2cos^2t/(1-sint)(1+sint)
=a^2
所以|OP|*|OQ|为定值.
b/x1=(b-bsint)/acost
bsint/(acost-x2)=b/x2
这两个式子是怎么得到的
设任一点M(acost,bsint)
短轴两端点A(0,b),B(0,-b)
MA交x轴于P(x1,0),MB交x轴于Q(x2,0)
b/x1=(b-bsint)/acost
x1=acost/(1-sint)
bsint/(acost-x2)=b/x2
x2=acost/(1+sint)
|OP|*|OQ|=|x1|*|x2|=a^2cos^2t/(1-sint)(1+sint)
=a^2
所以|OP|*|OQ|为定值.
b/x1=(b-bsint)/acost
bsint/(acost-x2)=b/x2
这两个式子是怎么得到的
▼优质解答
答案和解析
A、M、P三点共线.
PA的斜率kAP=(0-b)/(x1-0)=-b/x1
AM的斜率kAM=(bsint-b)/(acost-0)=-(b-bsint)/acost
A、M、P三点共线,则kAP=kAM、即b/x1=(b-bsint)/acost
同理,由B、M、Q三点共线,则有kBP=kBM、即bsint/(acost-x2)=b/x2
.
PA的斜率kAP=(0-b)/(x1-0)=-b/x1
AM的斜率kAM=(bsint-b)/(acost-0)=-(b-bsint)/acost
A、M、P三点共线,则kAP=kAM、即b/x1=(b-bsint)/acost
同理,由B、M、Q三点共线,则有kBP=kBM、即bsint/(acost-x2)=b/x2
.
看了 已知椭圆X^2/a^2+Y^...的网友还看了以下:
如图,三角形ABC在平面a外,AB交a=P,BC交a=Q,AC交a=R,求证P,Q,R三点共线 2020-04-05 …
如图,在Rt△ABC中,∠C=90°,BC=3,AC=4.点P,Q都是斜边AB上的动点,点P从B向 2020-05-02 …
如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0). 2020-05-16 …
在xy平面,直线L过原点O,和点A,A不等于O.取一点P,过P点做L的垂线和L相交于Q点,如果P点 2020-05-16 …
已知:如图,圆O1与圆O2相交于点P、Q,点C是线段O1O2的中点圆O1与圆O2相交于点P Q 点 2020-05-17 …
线y=-1/2x+2交y轴于A点且与直线y=x交于B点.在x轴上存在一动点Q(t,0),过Q点作x 2020-05-22 …
已只直线y=1/2x与双曲线y=k/x(k>0)交A,B2点,且A的横坐标为4求1k的值2若双曲线 2020-07-12 …
如图,三角形ABC在平面a外,AB交a=P,BA交a=Q,AC交a=R,求证P,Q,R三点共线 2020-07-21 …
如图过圆O外一点P作该圆的两条割线PAB和PCD分别交圆O于点ABCD弦AD和BC交于Q点,割线P 2020-07-31 …
如图,Rt△ABC中,∠C=90°,BC=6,AC=8,点P,Q都是斜边AB上的动点,点P从B向A运 2020-12-15 …