早教吧作业答案频道 -->数学-->
已知椭圆X^2/a^2+Y^2/b^2=1上任意一点M(除短轴端点外)与短轴两端点B1,B2的连线分别与X轴交于P,Q两点设任一点M(acost,bsint)短轴两端点A(0,b),B(0,-b)MA交x轴于P(x1,0),MB交x轴于Q(x2,0)b/x1=(b-bsint)/acostx
题目详情
已知椭圆X^2/a^2 +Y^2/b^2 =1上任意一点M(除短轴端点外)与短轴两端点B1,B2的连线分别与X轴交于P,Q两点
设任一点M(acost,bsint)
短轴两端点A(0,b),B(0,-b)
MA交x轴于P(x1,0),MB交x轴于Q(x2,0)
b/x1=(b-bsint)/acost
x1=acost/(1-sint)
bsint/(acost-x2)=b/x2
x2=acost/(1+sint)
|OP|*|OQ|=|x1|*|x2|=a^2cos^2t/(1-sint)(1+sint)
=a^2
所以|OP|*|OQ|为定值.
b/x1=(b-bsint)/acost
bsint/(acost-x2)=b/x2
这两个式子是怎么得到的
设任一点M(acost,bsint)
短轴两端点A(0,b),B(0,-b)
MA交x轴于P(x1,0),MB交x轴于Q(x2,0)
b/x1=(b-bsint)/acost
x1=acost/(1-sint)
bsint/(acost-x2)=b/x2
x2=acost/(1+sint)
|OP|*|OQ|=|x1|*|x2|=a^2cos^2t/(1-sint)(1+sint)
=a^2
所以|OP|*|OQ|为定值.
b/x1=(b-bsint)/acost
bsint/(acost-x2)=b/x2
这两个式子是怎么得到的
▼优质解答
答案和解析
A、M、P三点共线.
PA的斜率kAP=(0-b)/(x1-0)=-b/x1
AM的斜率kAM=(bsint-b)/(acost-0)=-(b-bsint)/acost
A、M、P三点共线,则kAP=kAM、即b/x1=(b-bsint)/acost
同理,由B、M、Q三点共线,则有kBP=kBM、即bsint/(acost-x2)=b/x2
.
PA的斜率kAP=(0-b)/(x1-0)=-b/x1
AM的斜率kAM=(bsint-b)/(acost-0)=-(b-bsint)/acost
A、M、P三点共线,则kAP=kAM、即b/x1=(b-bsint)/acost
同理,由B、M、Q三点共线,则有kBP=kBM、即bsint/(acost-x2)=b/x2
.
看了 已知椭圆X^2/a^2+Y^...的网友还看了以下:
已知椭圆T的方程为x^2/a^2+y^2/b^2=1(a>b>0),A(0,b),B(0,-b)和 2020-04-27 …
二元二次集合1,设A={(X,Y)|2X²-Y²+X-Y-3=0}B=﹛(X,Y)|4X²-2Y² 2020-06-06 …
在椭圆x^2/a^2+y^2/b^2=1(a>b>0)中,设左焦点,右顶点,短轴上方的顶点的坐标分 2020-07-16 …
1已知A={x|x2-1=0},B={y|y2-2ay+b=0,y∈R},若非空集合B包含于A,求 2020-07-26 …
设A(x,0),B(0,y),若AB关于点P(-1,2)对称,则x+y= 2020-08-01 …
3角形3边abc求证:abc≥(a+b-c)(a+c-b)(b+c-a)假设x=a+b-c>0y=a 2020-11-01 …
设实数x>0,y>0,z>0,a>0,b>0,且x,y,z满足条件x^2+y^2-xy=a^2;x^ 2020-11-01 …
设实数x,y满足条件4x-y-10≤0;x-2y+8≥0;x≥0,y≤0,若目标函数z=ax+by( 2020-11-01 …
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别是F1、F2,过右焦点F2与 2021-01-11 …
打勾函数(耐克函数)说实话,我也不清楚打勾函数真正叫什么,反正就叫打勾函数了.它的形式是y=ax+b 2021-01-15 …