早教吧作业答案频道 -->数学-->
已知椭圆X^2/a^2+Y^2/b^2=1上任意一点M(除短轴端点外)与短轴两端点B1,B2的连线分别与X轴交于P,Q两点设任一点M(acost,bsint)短轴两端点A(0,b),B(0,-b)MA交x轴于P(x1,0),MB交x轴于Q(x2,0)b/x1=(b-bsint)/acostx
题目详情
已知椭圆X^2/a^2 +Y^2/b^2 =1上任意一点M(除短轴端点外)与短轴两端点B1,B2的连线分别与X轴交于P,Q两点
设任一点M(acost,bsint)
短轴两端点A(0,b),B(0,-b)
MA交x轴于P(x1,0),MB交x轴于Q(x2,0)
b/x1=(b-bsint)/acost
x1=acost/(1-sint)
bsint/(acost-x2)=b/x2
x2=acost/(1+sint)
|OP|*|OQ|=|x1|*|x2|=a^2cos^2t/(1-sint)(1+sint)
=a^2
所以|OP|*|OQ|为定值.
b/x1=(b-bsint)/acost
bsint/(acost-x2)=b/x2
这两个式子是怎么得到的
设任一点M(acost,bsint)
短轴两端点A(0,b),B(0,-b)
MA交x轴于P(x1,0),MB交x轴于Q(x2,0)
b/x1=(b-bsint)/acost
x1=acost/(1-sint)
bsint/(acost-x2)=b/x2
x2=acost/(1+sint)
|OP|*|OQ|=|x1|*|x2|=a^2cos^2t/(1-sint)(1+sint)
=a^2
所以|OP|*|OQ|为定值.
b/x1=(b-bsint)/acost
bsint/(acost-x2)=b/x2
这两个式子是怎么得到的
▼优质解答
答案和解析
A、M、P三点共线.
PA的斜率kAP=(0-b)/(x1-0)=-b/x1
AM的斜率kAM=(bsint-b)/(acost-0)=-(b-bsint)/acost
A、M、P三点共线,则kAP=kAM、即b/x1=(b-bsint)/acost
同理,由B、M、Q三点共线,则有kBP=kBM、即bsint/(acost-x2)=b/x2
.
PA的斜率kAP=(0-b)/(x1-0)=-b/x1
AM的斜率kAM=(bsint-b)/(acost-0)=-(b-bsint)/acost
A、M、P三点共线,则kAP=kAM、即b/x1=(b-bsint)/acost
同理,由B、M、Q三点共线,则有kBP=kBM、即bsint/(acost-x2)=b/x2
.
看了 已知椭圆X^2/a^2+Y^...的网友还看了以下:
大家快来看看这几道题怎么简算!我急用!0.071*1234+0.71*567.6+7.1*23.4 2020-05-16 …
如图,已知一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A、B两点,且与反比例函数y=m 2020-05-17 …
如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线y=33x+23与x轴 2020-06-14 …
如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线y=33x+23与x轴 2020-06-14 …
求满足下列条件的平面方程(1)与X轴Y轴Z州交点分别为(2,0,0),(0,-3,0),(0,0, 2020-06-23 …
直接写得数.1.2+0.3=4+0.6=12.9-5=12+3.5=0.9+0.7=0.6+1.4 2020-07-19 …
数学已知y=-x+2与x轴、y轴已知直线y=-x+2与x轴、y轴分别交于点A和点B,另一直线y=k 2020-07-31 …
若直线l与x、y轴分别交于A(a,0),B(0,b),ab≠0,则直线l的截距式方程为xa+yb= 2020-08-01 …
1.在数轴上表示下列各数:负5,正3,负3.5,0,3分之2,负2分之3,0.75.2.在数轴1.在 2020-11-20 …
如图,直线l与x轴、y轴分别相交于A、B两点,已知B(0,3),∠BAO=30°,圆心P的坐标为(1 2021-01-11 …