早教吧作业答案频道 -->数学-->
已知关于x的一元二次方程x的平方-(2k+4)x+4k+3=0(1)求证:不论k取何值,此一元二次方程总有两个不相等的实数根(2)设直角三角形ABC两直角边的长是此一元二次方程的两根,斜边BC的长为10,
题目详情
已知关于x的一元二次方程x的平方-(2k+4)x+4k+3=0
(1)求证:不论k取何值,此一元二次方程总有两个不相等的实数根
(2)设直角三角形ABC两直角边的长是此一元二次方程的两根,斜边BC的长为10,试求直角三角形ABC的周长
已知关于x的一元二次方程x的平方-(2k+4)x+k的平方+4k+3=0
(1)求证:不论k取何值,此一元二次方程总有两个不相等的实数根
(2)设直角三角形ABC两直角边的长是此一元二次方程的两根,斜边BC的长为10,试求直角三角形ABC的周长
这才是正确的题目,上面打少了k的平方
(1)求证:不论k取何值,此一元二次方程总有两个不相等的实数根
(2)设直角三角形ABC两直角边的长是此一元二次方程的两根,斜边BC的长为10,试求直角三角形ABC的周长
已知关于x的一元二次方程x的平方-(2k+4)x+k的平方+4k+3=0
(1)求证:不论k取何值,此一元二次方程总有两个不相等的实数根
(2)设直角三角形ABC两直角边的长是此一元二次方程的两根,斜边BC的长为10,试求直角三角形ABC的周长
这才是正确的题目,上面打少了k的平方
▼优质解答
答案和解析
要求证有两个不相等的实数根 那么△>0
(2k+4)²-4(k²+4k+3)
=4k²+16k+16-4k²-16k-12
=4
无论k为何值 △=4>0
所以方程肯定有两个不相等的实数根
设两边长分别是a b
根据勾股定理得到:a²+b²=10²=100
根据韦达定理得到:a+b=2k+4 ab=k²+4k+3
a²+b²=(a+b)²-2ab=(2k+4)²-2(k²+4k+3)=4k²+16k+16-2k²-8k-6
=2k²+8k+10=100
2k²+8k-90=0
(2k-10)(k+9)=0
k1=5 k2=-9
a+b是直角边 所以肯定大于0 所以a+b=2k+4>0 k=-9舍去
所以k=5
a+b=2k+4=14 所以周长=14+10=24
(2k+4)²-4(k²+4k+3)
=4k²+16k+16-4k²-16k-12
=4
无论k为何值 △=4>0
所以方程肯定有两个不相等的实数根
设两边长分别是a b
根据勾股定理得到:a²+b²=10²=100
根据韦达定理得到:a+b=2k+4 ab=k²+4k+3
a²+b²=(a+b)²-2ab=(2k+4)²-2(k²+4k+3)=4k²+16k+16-2k²-8k-6
=2k²+8k+10=100
2k²+8k-90=0
(2k-10)(k+9)=0
k1=5 k2=-9
a+b是直角边 所以肯定大于0 所以a+b=2k+4>0 k=-9舍去
所以k=5
a+b=2k+4=14 所以周长=14+10=24
看了 已知关于x的一元二次方程x的...的网友还看了以下:
若方程3m(x+1)+1=m(3-x)-5x的解是负数,则M的取值范围是?3m(x+1)+1=m( 2020-04-09 …
在直角坐标系xOy中,直线C1的参数方程为x=1+ty=1-t(t为参数);以O为极点,x轴正半轴 2020-04-13 …
在平面直角坐标系xoy中,曲线C的参数方程为x=2cosθy=2+2sinθ(θ为参数),直线l的 2020-07-20 …
已知抛物线的顶点在原点,准线方程为x=1/4,该抛物线与过点(-1,0)的直线交于A,B.已知抛物 2020-07-31 …
在直角坐标系中,直线l的参数方程为x=1+ty=-2+2t(t为参数),则它的截距式方程为x2+y 2020-07-31 …
在直角坐标系xOy中,圆C的方程为(x-1)2+(y-2)2=1,以原点O为极点,以x轴正半轴为极 2020-07-31 …
若圆O1方程为(x+1)2+(y+1)2=4,圆O2方程为(x-3)2+(y-2)2=1,则方程( 2020-08-01 …
关于参数方程的问题1.x=e^t+e^(-t)y=2(e^t-e^(-t))e=2.71828(t 2020-08-02 …
参数方程……直线参数方程为x=-1+t,y=t(t为参数),曲线c的极坐标方程是ρ=sinθ/1- 2020-08-02 …
填空6方程(x-1)²=47一元二次方程2(x-2)²-8=0的解是?8用直接开平方解方程1/2(2 2020-12-31 …