早教吧作业答案频道 -->数学-->
如图点D在反比例函数y=k/x(k>0)的图像上,点C在x轴的正半轴上且坐标为(4,O),△ODC是以CO为斜边的等腰如图点D在反比例函数y=k/x(k>0)的图像上,点C在x轴的正半轴上且标为(4,O),△ODC是以CO为斜
题目详情
如图点D在反比例函数y=k/x(k>0)的图像上,点C在x轴的正半轴上且坐标为(4,O),△ODC是以CO为斜边的等腰
如图点D在反比例函数y=k/x(k>0)的图像上,点C在x轴的正半轴上且标为(4,O),△ODC是以CO为斜边的等腰直角形.
(1)求反比例函数的解析式;

(2)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,连接OB,将OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F,求直线OF的长

(最右边的X轴上的点打错了,是C不是D)
(3)直线y=-x-+3交x轴于M点,交y轴于N点,点P是双曲线y=k/x(k>0)上的一动点,PQ⊥x轴于Q点,PR⊥y轴月R点,PQ,PR与直线MN交与H,G两点,给出下列两个结论①△PGH的面积不变,②MG×NH的值不变.其中有且只有一个结论是正确的,请你选择并证明求值.

如图点D在反比例函数y=k/x(k>0)的图像上,点C在x轴的正半轴上且标为(4,O),△ODC是以CO为斜边的等腰直角形.
(1)求反比例函数的解析式;

(2)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,连接OB,将OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F,求直线OF的长

(最右边的X轴上的点打错了,是C不是D)
(3)直线y=-x-+3交x轴于M点,交y轴于N点,点P是双曲线y=k/x(k>0)上的一动点,PQ⊥x轴于Q点,PR⊥y轴月R点,PQ,PR与直线MN交与H,G两点,给出下列两个结论①△PGH的面积不变,②MG×NH的值不变.其中有且只有一个结论是正确的,请你选择并证明求值.

▼优质解答
答案和解析
如图点D在反比例函数y=k/x(k>0)的图像上,点C在x轴的正半轴上且标为(4,O),△ODC是以CO为斜边的等腰直角形.
(1)求反比例函数的解析式;
(2)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,连接OB,将OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F,求直线OF的长
(3)直线y=-x-+3交x轴于M点,交y轴于N点,点P是双曲线y=k/x(k>0)上的一动点,PQ⊥x轴于Q点,PR⊥y轴月R点,PQ,PR与直线MN交与H,G两点,给出下列两个结论①△PGH的面积不变,②MG×NH的值不变.其中有且只有一个结论是正确的,请你选择并证明求值.
(1)解析:∵D为函数y=k/x(k>0)上一点,O(0,0),C(4,0),△ODC是以CO为斜边的等腰直角形
设D(x,y)
|OD|=√(x^2+y^2),|OC|=√[(x-4)^2+y^2)
∴x^2+y^2= (x-4)^2+y^2==>x=2
|OD|=4/√2=2√2==>y=2==>y=k/2=2==>k=4
∴反比例函数y=4/x
(2)解析:∵反比例函数y=4/x,AB⊥X轴,BE⊥Y轴,∴B(1,4),A(1,0),E(0,4)
∵⊿ABO与⊿A’BO关于直线OB对称
∴⊿ABO≌⊿A’BO==>∠OBA=∠OBA’,∠BOA=∠BOA’
延长BA’交X轴于G,设OG=x
∴∠OBA=∠OBA’
由角平分线性质,OG/OA=BG/AB=x==>BG=4x
∴BG^2-AB^2+AG^2==>16x^2=(x+1)^2+16==>x=17/15
∵⊿ABG∽⊿OFG
∴OF/AB=GO/GA
∴OF=GO*AB/GA=17/15*4/(17/15+1)=17/8
(3)证明:∵直线y=3-x交X轴于M(3,0),交Y轴于N(0,3),点P是双曲线y=k/x(k>0)上的一动点,PQ⊥x轴于Q点,PR⊥y轴月R点,PQ,PR与直线MN交与H,G两点
设P(x0,4/x0)
∴H(x0,3-x0),G((3x0-4)/x0,4/x0)
|MG|^2=(3x0-4)/x0-3)^2+(4/x0)^2=32/x0^2
|NH|^2=(x0)^2+(3-3+x0)^2=2x0^2
∴|MG|*|NH|=8
∴MG×NH的值不变
(1)求反比例函数的解析式;
(2)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,连接OB,将OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F,求直线OF的长
(3)直线y=-x-+3交x轴于M点,交y轴于N点,点P是双曲线y=k/x(k>0)上的一动点,PQ⊥x轴于Q点,PR⊥y轴月R点,PQ,PR与直线MN交与H,G两点,给出下列两个结论①△PGH的面积不变,②MG×NH的值不变.其中有且只有一个结论是正确的,请你选择并证明求值.
(1)解析:∵D为函数y=k/x(k>0)上一点,O(0,0),C(4,0),△ODC是以CO为斜边的等腰直角形
设D(x,y)
|OD|=√(x^2+y^2),|OC|=√[(x-4)^2+y^2)
∴x^2+y^2= (x-4)^2+y^2==>x=2
|OD|=4/√2=2√2==>y=2==>y=k/2=2==>k=4
∴反比例函数y=4/x
(2)解析:∵反比例函数y=4/x,AB⊥X轴,BE⊥Y轴,∴B(1,4),A(1,0),E(0,4)
∵⊿ABO与⊿A’BO关于直线OB对称
∴⊿ABO≌⊿A’BO==>∠OBA=∠OBA’,∠BOA=∠BOA’
延长BA’交X轴于G,设OG=x
∴∠OBA=∠OBA’
由角平分线性质,OG/OA=BG/AB=x==>BG=4x
∴BG^2-AB^2+AG^2==>16x^2=(x+1)^2+16==>x=17/15
∵⊿ABG∽⊿OFG
∴OF/AB=GO/GA
∴OF=GO*AB/GA=17/15*4/(17/15+1)=17/8
(3)证明:∵直线y=3-x交X轴于M(3,0),交Y轴于N(0,3),点P是双曲线y=k/x(k>0)上的一动点,PQ⊥x轴于Q点,PR⊥y轴月R点,PQ,PR与直线MN交与H,G两点
设P(x0,4/x0)
∴H(x0,3-x0),G((3x0-4)/x0,4/x0)
|MG|^2=(3x0-4)/x0-3)^2+(4/x0)^2=32/x0^2
|NH|^2=(x0)^2+(3-3+x0)^2=2x0^2
∴|MG|*|NH|=8
∴MG×NH的值不变
看了 如图点D在反比例函数y=k/...的网友还看了以下:
)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE 2020-04-05 …
如图,在平行四边形ABCD中,且AB=12cm,BC=6cm,∠A=60,点E在CD上,且DE=4 2020-05-17 …
如图,点A、B分别在x轴、y轴上,且OA=OB,P为动点,且PA⊥PB.(1)如图①,P在第一象限 2020-06-19 …
已知某空间几何体的正视图和侧视图相同,且如图所示,俯视图是两个同心圆,则它的表面积为()A.7+4 2020-06-30 …
如图①所示,已知AE⊥FE,垂足为E,且E是DC的中点(1)如图①,如果FC⊥DC,AD⊥DC,垂 2020-07-30 …
如图所示,图中的实线是一列简谐横波在t=0时刻的波形图,虚线对应的是t=0.5s时的波形图,求:① 2020-07-30 …
如图椭圆x2/a2+y2/b2=1(a>b>0)与过A(2,0),B(0,1)的直线有且只有一个公 2020-08-01 …
如图所示A、B两小球用细线跨过半径为R的光滑圆柱,圆柱固定在地面上.已知A、B两个小球的质量mB>m 2020-11-10 …
如图公路AB和铁路CD在点P处交汇,且∠BPD=60°,点Q在∠BPD的平分线上且在点Q处有一疗养院 2020-11-20 …
如图,AE//BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD。如 2020-12-25 …