早教吧作业答案频道 -->物理-->
急、有追加.A景点和B景点位于笔直的甬,台温高速公路X同侧,AB=50kmA,B到直线X的距离分别为10km,40km.要在甬台温高速公路旁修建一服务区P,向A,B两景区运送游客.小明设计了两种方案,图(1)是方
题目详情
急、有 追 加.
A景点和B景点位于笔直的甬,台温高速公路X同侧,AB=50kmA,B到直线X的距离分别为10km,40km.要在甬台温高速公路旁修建一服务区P,向A,B两景区运送游客.小明设计了两种方案,图(1)是方案一的示意图,P到A,B的距离之和S1=PA+PB,图(2)是方案二示意图,P到A,B的距离之和S2=PA+PA
(1)求S1,S2,并比较它们的大小
(2)请你说明S2=PA+PB的值为最小值
(3)某高速公路Y与甬台温高速公路垂直,建立如图(3)所示的直角坐标系,点B到直线Y的距离为30km,请你在X旁和Y旁各修建一服务区P,Q,使P,A,B.Q组成的四边形的周长最小,并求出这个最小值
A景点和B景点位于笔直的甬,台温高速公路X同侧,AB=50kmA,B到直线X的距离分别为10km,40km.要在甬台温高速公路旁修建一服务区P,向A,B两景区运送游客.小明设计了两种方案,图(1)是方案一的示意图,P到A,B的距离之和S1=PA+PB,图(2)是方案二示意图,P到A,B的距离之和S2=PA+PA
(1)求S1,S2,并比较它们的大小
(2)请你说明S2=PA+PB的值为最小值
(3)某高速公路Y与甬台温高速公路垂直,建立如图(3)所示的直角坐标系,点B到直线Y的距离为30km,请你在X旁和Y旁各修建一服务区P,Q,使P,A,B.Q组成的四边形的周长最小,并求出这个最小值
▼优质解答
答案和解析
(1)没有看到原图,不好比较
(2)以直线x为对称轴,做A点的镜像A',连接A’,B.则A'B与直线x的交点P就是服务区的最佳位置.
当然,也可以做B的镜像B',连接A,B'.AB’与直线x的交点也是同一个点P.
(3)再以直线Y为对称轴,做B点的镜像B',连接A'B',分别交直线x、直线Y于P、Q,则线段A'B'就是AP+PQ+QB.因为线段AB固定,所以说,该方案就是最佳方案.
可以计算出,AB的水平距离是40km,
则A'B'的水平距离为100km,A'B'的垂直距离为50km,所以A'B'=112km
这个最小值是162km
(2)以直线x为对称轴,做A点的镜像A',连接A’,B.则A'B与直线x的交点P就是服务区的最佳位置.
当然,也可以做B的镜像B',连接A,B'.AB’与直线x的交点也是同一个点P.
(3)再以直线Y为对称轴,做B点的镜像B',连接A'B',分别交直线x、直线Y于P、Q,则线段A'B'就是AP+PQ+QB.因为线段AB固定,所以说,该方案就是最佳方案.
可以计算出,AB的水平距离是40km,
则A'B'的水平距离为100km,A'B'的垂直距离为50km,所以A'B'=112km
这个最小值是162km

看了急、有追加.A景点和B景点位于...的网友还看了以下:
试求经过直线L1:2x+y-1=0和L2:x-y=0的交点且与直线L3:3x-4y+5=0平行的直 2020-04-27 …
一道数学微分方程的题假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x) 2020-05-13 …
垂直度0.3mm,就是等于垂直度正负0.15mm吗?一个产品的两个平面是成90度的折弯,要测两个折 2020-05-17 …
mathematica新手求问怎么用Dsolve求dn/dt=rn(1-n/k)方程不对导致out 2020-05-21 …
英语翻译先生,我还是希望在您的带领下行走,我希望可以一直和您一起长久地行走下去.在中间间隔这些日子 2020-06-04 …
已知直线的一点和另一平行直线的方程求该方程已知直线I过点(0,2)求该直线方程①直线I与直线3x- 2020-07-21 …
用一块长4.8米、宽0.8米的长方形红布做直角三角形小旗,小旗的两条直角边分别为0.4米和0.2米 2020-07-30 …
求点P(2,0,-1)关于直线{x-y-4z+12=02x+y-2z+3=0的对称点.x=2z-5 2020-08-01 …
集合A{xIx^2+4x=0}集合B{xIx^2+(2a+1)x+a^2-1=0}A交B=B求a的取 2020-11-03 …
如图,在生产图纸上通常用300+0.2-0.5来表示轴的加工要求,这里300表示直径是300mm,+ 2020-11-21 …