早教吧作业答案频道 -->数学-->
如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6.D、E分别是AC、AB上的点,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.(1)求证:BC∥平面A1DE;(2)求证:BC⊥平面A1DC;(3)当D点
题目详情
如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6.D、E分别是AC、AB上的点,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.

(1)求证:BC∥平面A1DE;
(2)求证:BC⊥平面A1DC;
(3)当D点在何处时,A1B的长度最小,并求出最小值.

(1)求证:BC∥平面A1DE;
(2)求证:BC⊥平面A1DC;
(3)当D点在何处时,A1B的长度最小,并求出最小值.
▼优质解答
答案和解析
(本小题共14分)
(1)证明:∵DE∥BC,DE⊂面A1DE,BC⊄面A1DE
∴BC∥面A1DE…(4分)
(2)证明:在△ABC中,∠C=90°,DE∥BC,
∴AD⊥DE∴A1D⊥DE.
又A1D⊥CD,CD∩DE=D,∴A1D⊥面BCDE.
由BC⊂面BCDE,
∴A1D⊥BC.BC⊥CD,A1D∩CD=D,
∴BC⊥面A1DC.…(9分)
(3)设DC=x则A1D=6-x由(Ⅱ)知,△A1CB,△A1DC均为直角三角形.
A1B=
=
,即A1B=
=
=
…(12分)
当x=3时,A1B的最小值是3
.
即当D为AC中点时,A1B的长度最小,最小值为3
.…(14分)
(本小题共14分) (1)证明:∵DE∥BC,DE⊂面A1DE,BC⊄面A1DE
∴BC∥面A1DE…(4分)
(2)证明:在△ABC中,∠C=90°,DE∥BC,
∴AD⊥DE∴A1D⊥DE.
又A1D⊥CD,CD∩DE=D,∴A1D⊥面BCDE.
由BC⊂面BCDE,
∴A1D⊥BC.BC⊥CD,A1D∩CD=D,
∴BC⊥面A1DC.…(9分)
(3)设DC=x则A1D=6-x由(Ⅱ)知,△A1CB,△A1DC均为直角三角形.
A1B=
| A1C2+BC2 |
| A1D2+DC2+BC2 |
| x2+32+(6-x)2 |
| 2x2-12x+45 |
| 2(x-3)2+27 |
当x=3时,A1B的最小值是3
| 3 |
即当D为AC中点时,A1B的长度最小,最小值为3
| 3 |
看了 如图1,在Rt△ABC中,∠...的网友还看了以下:
【急求解解析几何】已知曲线c的方程为kx^2+(4-k)y^2=k+1.已知曲线c的方程为kx^2 2020-05-16 …
(1+x)+(1+x)^2+(1+x)^3+.+(1+x)^n=a0+a1*x+a2*x^2+.a 2020-05-20 …
求教分析一道代数式值题的解答过程.题目是这样的:已知(b+c)/a=(a+c)/b=(a+b)/c 2020-05-20 …
在一个三角形中,∠A=2∠C,∠B=3∠C,求∠A、∠B、∠C的度数.在一个三角形中,∠A=2∠C 2020-05-23 …
求解A、B、C、D、E、F六个数的平均数的问题A、B、C、D、E、F六个数的平均数是147,A、B 2020-06-02 …
已知A:B=5:3,B:C=7:2,怎么求A:B:C?有一个同学是这样求的:第一步找出中间项B,求 2020-06-11 …
条件概率问题,已知P(A),P(B|A),P(C|A),能否求得P(C|A,B)?写错了,是已知P 2020-06-13 …
立体几何球A,B,C是半径为1的球面上三点,B,C两点间的球面距离是π/3,点A与B,C两点间的球 2020-06-14 …
A为3维行向量,B为3维列向量,A,B满足A*B=2,则矩阵B*A的非零特征值为答案的解法是设C= 2020-06-20 …
c语言中的一选择题:在C语言中不可表示的字符是()A.换行符B.响铃符C.求和符D.垂直制表符c语 2020-06-26 …