早教吧作业答案频道 -->数学-->
已知函数f(x)=lnx+(ax^2)/2-bx(a.b为常数).1>若a=-2,b=-1,求证:x∈(1,+∽)时,f(x)当a>0,若f(x)存在极值,求b与a的关系,并求f(x)的极值
题目详情
已知函数f(x)=lnx+(ax^2)/2-bx(a.b为常数).
1>若a=-2,b=-1,求证:x∈(1,+∽)时,f(x)当a>0,若f(x)存在极值,求b与a的关系,并求f(x)的极值
1>若a=-2,b=-1,求证:x∈(1,+∽)时,f(x)当a>0,若f(x)存在极值,求b与a的关系,并求f(x)的极值
▼优质解答
答案和解析
已知函数f(x)=lnx+(ax^2)/2-bx(a,b为常数)
1>若a=-2,b=-1,求证:x∈(1,+∽)时,f(x)当a>0,若f(x)存在极值,求b与a的关系,并求f(x)的极值
(1)解析:∵函数f(x)=lnx-x^2+x,定义域为x>0
令函数f’(x)=1/x-2x+1=0==>2x^2-x-1=0==>x=1
∴函数f(x)在x=1处取极大值,f(1)=0
∴x∈(1,+∞)时,f(x)0
令f’(x)=1/x +ax-b
当a=0时,x=1/b>0==>b>0;
当a>0时,f’(x)=0==>ax^2-bx+1=0==>x1=[b-√(b^2-4a)]/(2a),x2=[b+√(b^2-4a)]/(2a);
b^2>=4a==>b=2√a;
当a0且b=2√a时,x1=[b-√(b^2-4a)]/(2a)
x2=[b+√(b^2-4a)]/(2a);
∴函数f(x)在x1处取极大值f(x1),在x2处取极小值f(x2)
1>若a=-2,b=-1,求证:x∈(1,+∽)时,f(x)当a>0,若f(x)存在极值,求b与a的关系,并求f(x)的极值
(1)解析:∵函数f(x)=lnx-x^2+x,定义域为x>0
令函数f’(x)=1/x-2x+1=0==>2x^2-x-1=0==>x=1
∴函数f(x)在x=1处取极大值,f(1)=0
∴x∈(1,+∞)时,f(x)0
令f’(x)=1/x +ax-b
当a=0时,x=1/b>0==>b>0;
当a>0时,f’(x)=0==>ax^2-bx+1=0==>x1=[b-√(b^2-4a)]/(2a),x2=[b+√(b^2-4a)]/(2a);
b^2>=4a==>b=2√a;
当a0且b=2√a时,x1=[b-√(b^2-4a)]/(2a)
x2=[b+√(b^2-4a)]/(2a);
∴函数f(x)在x1处取极大值f(x1),在x2处取极小值f(x2)
看了 已知函数f(x)=lnx+(...的网友还看了以下:
已知1/3≤a≤1,若函数f(x)=ax²-2x+1在区间[1,3]上的最大值为M(a),最小值为 2020-04-06 …
已知根号x=根号a-(1/根号a),求(x+2+根号4x+x^2)/(x+2-根号4x+x^2)的 2020-05-16 …
高一关于二次函数的题(1)不等式ax2+bx+c>0的解为-1<x<3,求bx2+ax-c≥0的解 2020-05-20 …
已知函数f(x)=(2/3)^(|x|-a),求f(x)单调区间,若f(x)的最大值为9/4,求a 2020-06-27 …
请教一道高数题设f(x)在x=0处二阶可导,又x趋向于0时,f(x)/(1-cosx)=A,求f( 2020-07-30 …
1.已知0<x<a求y=x²(a-x)的最大值2.已知0<x<a求y=x(a²-x²)的最大值 2020-07-31 …
已知函数f(x)=-x三次方+3x二次方+9x+a求f(x)的单调递减区间若f(x)区间[-2.2] 2020-10-31 …
1.若x/a-b=y/b-c=z/c-a求:x+y+z2.已知x^2/4^4-5x^2+1=1/3求 2020-11-01 …
函数f(x)=2x^+(x-a)|x-a|,求f(x)最小值f(x)=3(x-a/3)^+2a^/3 2020-11-07 …
已知集合a等于大括号里x丨-4≤x≤5,b=大括号里x丨a-1≤x≤2a+1,b包含于a,求数a的取 2020-12-02 …