早教吧作业答案频道 -->数学-->
圆锥的轴截面SAB为正三角形,S为顶点1,圆锥的轴截面SAB为正三角形,S为顶点,C为SB的中点,母线长为2,则由A到C圆锥侧面上的最短距离____√5__________2,正三棱柱有一个半径为√3的内切球,则此棱柱的
题目详情
圆锥的轴截面SAB为正三角形,S为顶点
1,圆锥的轴截面SAB为正三角形,S为顶点,C为SB的中点,母线长为2,
则由A到C圆锥侧面上的最短距离____√5__________
2,正三棱柱有一个半径为√3的内切球,则此棱柱的体积____54______
3,球O的半径为R,它的表面上有两点A,B,且∠AOB=π/4,那么A,B两点间的球面距离为___πR/4_____
1,圆锥的轴截面SAB为正三角形,S为顶点,C为SB的中点,母线长为2,
则由A到C圆锥侧面上的最短距离____√5__________
2,正三棱柱有一个半径为√3的内切球,则此棱柱的体积____54______
3,球O的半径为R,它的表面上有两点A,B,且∠AOB=π/4,那么A,B两点间的球面距离为___πR/4_____
▼优质解答
答案和解析
1.
这类题的思路是:在侧面展开图中,利用两点之间线段最短求得最短距离.
将圆锥侧面沿VB展开
设侧面展开扇形的圆心角度数为n,底面周长=侧面展开扇形的弧长得:
2π=nπ×2/180
解得n=180,
所以,其侧面展开图是一个半圆.
如图,在半圆V中,原来的点A是半圆的中点A1,连结VA1、A1C(A1C即为所求)
因为A1是半圆的中点,所以VA1⊥BB1,在直角三角形VA1C中,由勾股定理可得
A1C=……=√5
即最短距离是√5
(V即题中的S)
2.
正三棱柱有一个半径为√3的内切球,
过内切球球心作水平截面,
截面为一个正三角形,
内切圆半径r=√3,
底面面积=3√3r²,
高=2r,
所以正三棱柱体积=6√3r³=54
3.
球心角为45度
弧长就是球最大周长乘以1/8 (45度/360度)
2*π*R/8=πR/4
这类题的思路是:在侧面展开图中,利用两点之间线段最短求得最短距离.
将圆锥侧面沿VB展开
设侧面展开扇形的圆心角度数为n,底面周长=侧面展开扇形的弧长得:
2π=nπ×2/180
解得n=180,
所以,其侧面展开图是一个半圆.
如图,在半圆V中,原来的点A是半圆的中点A1,连结VA1、A1C(A1C即为所求)
因为A1是半圆的中点,所以VA1⊥BB1,在直角三角形VA1C中,由勾股定理可得
A1C=……=√5
即最短距离是√5
(V即题中的S)
2.
正三棱柱有一个半径为√3的内切球,
过内切球球心作水平截面,
截面为一个正三角形,
内切圆半径r=√3,
底面面积=3√3r²,
高=2r,
所以正三棱柱体积=6√3r³=54
3.
球心角为45度
弧长就是球最大周长乘以1/8 (45度/360度)
2*π*R/8=πR/4
看了 圆锥的轴截面SAB为正三角形...的网友还看了以下:
1.已知正六棱锥的底面边长为3cm,斜高为5cm,求它的侧面积和体积.2.已知同一底面半径为3cm 2020-04-07 …
已知正四棱锥的底面边长为a,侧棱长为根号2,求内切球的表面积已知正四棱锥的底面边长为a,侧棱长为根 2020-05-15 …
关于曲面积分的疑问∫∫x^3dydz+y^3dxdz+z^3dxdy,其中Σ为球面x^2+y^2 2020-05-16 …
若|a-2|=2-a,则数a在数轴上的对应点在()A.表示数2的点的左侧B.表示数2的点的右侧C. 2020-05-21 …
已知:二次函数y=x^-(m-3)x-3m的图像与x轴交与A,B两点,A在原点左侧,B在原点右侧, 2020-06-04 …
有AB两点,在数轴上分别表示实数a,b,若a的绝对值是b的绝对值的4倍,且A,B两点间的距离是15 2020-06-20 …
已知,氨基酸a-羧基的pK1=2,a-氨基的pK2=9,Lys侧链氨基的pK=11,Glu侧链羧基 2020-07-21 …
如图,一粗细均匀的U形管竖直放置,A侧上端封闭,B侧上侧与大气相通,下端开口处开关K关闭,A侧空气柱 2020-11-04 …
如图1是对燕麦胚芽鞘所进行的处理,那么一段时间后,图2中①②③在图示位置时,其生长情况依次是()A. 2020-12-15 …
如图为单侧光(左侧光)照射下植物胚芽鞘向左弯曲生长的局部剖面示意图.下列有关该现象说法正确的是()A 2021-01-14 …