早教吧作业答案频道 -->数学-->
如图,AB‖CD,直线EF分别交AB,CD于M.P,MN.PQ分别平分∠AME和∠DPF,求证:MN‖PQ.
题目详情
如图,AB‖CD,直线EF分别交AB,CD于M.P,MN.PQ分别平分∠AME和∠DPF,求证:MN‖PQ.


▼优质解答
答案和解析
三角形内角和定理证明中化归思想的渗透
所谓化归思想,就是在面临新问题时,总企图将它转化归结为已经解决了的问题或者比较熟悉的问题来解决.初中数学尤其是几何教学中,很多问题都可以用运化归思想来解决.
三角形内角和定理 三角形三个内角的和等干180°.
已知:△ABC(如图1).求证:∠A+∠B+∠C=180°.
三角形内角和定理有多种证明方法,那么,这些证法都是怎样想到的呢?我们下面来作一下分析,
思路一 要证明三角形的三个内角之和等于180°,联想到平角的大小是180°.因此,便设法将三角形的三个内角拼成一个平角,为此,用辅助线构造出一个平角,再用辅助线(平行线)"移动"内角,将其集中起来,或用其它方法将其集中起来,这就是"拼角"的思路.
“移动内角(或用其它方法)”把三角形的三个内角拼成一个平角
根据这个思路,可设计出多种证法,证法如下:
证法一 延长边BC,CD是延长线,并过顶点C作CE‖BA(如图2),则∠1=∠A(两直线平行,内错角相等),∠2=∠B(两直线平行,同位角相等).
又∵∠1+∠2+∠ACB=180° (平角的定义),
∴∠A+∠B+∠ACB=180°.
证法二 过顶点C作DE‖AB(如图3),则∠1=∠A,∠2=∠B(两直线平行,内错角相等).
又∵∠1+∠ACB+∠2=180°(平角的定义),
∴∠A+∠ACB+∠B=180°
证法三在BC边上任取一点D,作DE‖BA,DF‖CA,分别交AC于E,交AB于F(如图4),则有∠2=∠B,∠3=∠C(两直线平行,同位角相等),
∠1=∠4(两直线平行,内错角相等),
∠4=∠A(两直线平行,同位角相等),
∴∠1=∠A(等量代换).
又∵∠1+∠2+∠3=180°(平角的定义),
∴∠A+∠B+∠C=180°.
证法四 作BC的延长线CD,在△ABC的外部以CA为一边,CE为另一边画∠1=∠A(如图5),于是CE‖BA(内错角相等,两直线平行).
∴∠B=∠2(两直线平行,同位角相等).
又∵∠1+∠2+∠ACB=180°(平角的定义),
∴∠A+∠B+∠ACB=180°.
证法五 在△ABC的内部任取一点D,连结AD、BD,并延长分别交边BC、AC于点E、F,再连结CD(如图6),则有∠7=∠1+∠2,∠8=∠3+∠4,∠9=∠5+∠6(三角形的任何一个外角等于和它不相邻的两个内角的和).
又∵∠7+∠8+∠9=180° (平角的定义),
∴∠1+∠2+∠3+∠4+∠5+∠6=180°.
即∠BAC+∠ABC+∠ACB=180°.
思路二 我们知道,平行线的同旁内角之和为180°,那么,能否将三角形的三个内角拼成平行线的一组同旁内角呢?
根据这一思路,也可以设计出多种证法,证法如下:
证法六 过顶点C作CD‖BA(如图7),则∠1=∠A(两直线平行,内错角相等).
∵CD‖BA.
∴∠1+∠ACB+∠B=180°(两直线平行,同旁内角互补).
∴∠A+∠ACB+∠B=180°.
证法七 任作射AD交BC于D,分别过点B、C作BE‖DA,CF‖DA(如图8),则有∠1=∠3,∠2=∠4(两直线平行,内错角相等).
∵BE‖DA,CF‖DA,
∴BE‖CF.
∴∠3+∠ABC+∠ACB+∠4=180°(两直线平行,同旁内角互补).
∴∠1+∠ABC+∠ACB+∠2=180°.
∴∠BAC+∠ABC+∠ACB=180°.
上面两种证明思路,都是化归思想的体现.这种思想是一种重要的解题策略,它可以帮助我们确定思考的方向
所谓化归思想,就是在面临新问题时,总企图将它转化归结为已经解决了的问题或者比较熟悉的问题来解决.初中数学尤其是几何教学中,很多问题都可以用运化归思想来解决.
三角形内角和定理 三角形三个内角的和等干180°.
已知:△ABC(如图1).求证:∠A+∠B+∠C=180°.
三角形内角和定理有多种证明方法,那么,这些证法都是怎样想到的呢?我们下面来作一下分析,
思路一 要证明三角形的三个内角之和等于180°,联想到平角的大小是180°.因此,便设法将三角形的三个内角拼成一个平角,为此,用辅助线构造出一个平角,再用辅助线(平行线)"移动"内角,将其集中起来,或用其它方法将其集中起来,这就是"拼角"的思路.
“移动内角(或用其它方法)”把三角形的三个内角拼成一个平角
根据这个思路,可设计出多种证法,证法如下:
证法一 延长边BC,CD是延长线,并过顶点C作CE‖BA(如图2),则∠1=∠A(两直线平行,内错角相等),∠2=∠B(两直线平行,同位角相等).
又∵∠1+∠2+∠ACB=180° (平角的定义),
∴∠A+∠B+∠ACB=180°.
证法二 过顶点C作DE‖AB(如图3),则∠1=∠A,∠2=∠B(两直线平行,内错角相等).
又∵∠1+∠ACB+∠2=180°(平角的定义),
∴∠A+∠ACB+∠B=180°
证法三在BC边上任取一点D,作DE‖BA,DF‖CA,分别交AC于E,交AB于F(如图4),则有∠2=∠B,∠3=∠C(两直线平行,同位角相等),
∠1=∠4(两直线平行,内错角相等),
∠4=∠A(两直线平行,同位角相等),
∴∠1=∠A(等量代换).
又∵∠1+∠2+∠3=180°(平角的定义),
∴∠A+∠B+∠C=180°.
证法四 作BC的延长线CD,在△ABC的外部以CA为一边,CE为另一边画∠1=∠A(如图5),于是CE‖BA(内错角相等,两直线平行).
∴∠B=∠2(两直线平行,同位角相等).
又∵∠1+∠2+∠ACB=180°(平角的定义),
∴∠A+∠B+∠ACB=180°.
证法五 在△ABC的内部任取一点D,连结AD、BD,并延长分别交边BC、AC于点E、F,再连结CD(如图6),则有∠7=∠1+∠2,∠8=∠3+∠4,∠9=∠5+∠6(三角形的任何一个外角等于和它不相邻的两个内角的和).
又∵∠7+∠8+∠9=180° (平角的定义),
∴∠1+∠2+∠3+∠4+∠5+∠6=180°.
即∠BAC+∠ABC+∠ACB=180°.
思路二 我们知道,平行线的同旁内角之和为180°,那么,能否将三角形的三个内角拼成平行线的一组同旁内角呢?
根据这一思路,也可以设计出多种证法,证法如下:
证法六 过顶点C作CD‖BA(如图7),则∠1=∠A(两直线平行,内错角相等).
∵CD‖BA.
∴∠1+∠ACB+∠B=180°(两直线平行,同旁内角互补).
∴∠A+∠ACB+∠B=180°.
证法七 任作射AD交BC于D,分别过点B、C作BE‖DA,CF‖DA(如图8),则有∠1=∠3,∠2=∠4(两直线平行,内错角相等).
∵BE‖DA,CF‖DA,
∴BE‖CF.
∴∠3+∠ABC+∠ACB+∠4=180°(两直线平行,同旁内角互补).
∴∠1+∠ABC+∠ACB+∠2=180°.
∴∠BAC+∠ABC+∠ACB=180°.
上面两种证明思路,都是化归思想的体现.这种思想是一种重要的解题策略,它可以帮助我们确定思考的方向
看了 如图,AB‖CD,直线EF分...的网友还看了以下:
下列有关电场强度的说法是否正确?为什么?1不放q时,电场力为零,所以场强也为零2放入-q测得的E与放 2020-03-30 …
关于电场强度,下列说法中,正确的是...A.公式E=F/q是电场强度的定义式,适用于任何电场,其中F 2020-03-30 …
已知函数f(x)=(x-1)^2,数列an是公差为d的等差数列,bn是公比为q的等比数列.若a1= 2020-04-05 …
已知函数f(x)对任意实数p、q都满足:f(p+q)=f(p)×f(q),且f(1)=3分之1,( 2020-06-03 …
物理中的定义式我们老师说定义式的左右两边无关,就像E=F/Q不能说E与F成正比,与Q成反比,E只与 2020-06-14 …
设一组初始记录关键字序列为(Q,H,C,Y,P,A,M,S,R,D,F,X),则按字母升序的第一趟 2020-07-17 …
一带负点金属球,体积大小不能忽略,其附近某点的电场强度为E.若在该点放一带正点的点电荷q,且测得q 2020-07-20 …
E=F/q这个公式中的q只能是点电荷的电荷量吗?不是说适用于一切电场吗?变形后的F=Eq中的q呢? 2020-07-20 …
关于场强的题在一个带正电的大导体球附近外P点放置一个试探电荷q(q〉0),实际上测得它受力F.若考虑 2020-11-27 …
检验电荷的电荷量为什么要足够小E不是等于F/q的么?F=KQq/RRF再除以一个q得到E也就是说E的 2020-12-09 …