早教吧作业答案频道 -->数学-->
如图抛物线y=a(x+1)(x-4)的图像与直线y=1/3x-2相交于a、b两点,且该直线与x轴交与点p,交y轴与点a坐标轴上是否存在点m,使得三角形mab是直角三角形坐标轴
题目详情
如图抛物线y=a(x+1)(x-4)的图像与直线y=1/3x-2相交于a、b两点,且该直线与x轴交与点p,交y轴与点a
坐标轴上是否存在点m,使得三角形mab是直角三角形
坐标轴
坐标轴上是否存在点m,使得三角形mab是直角三角形
坐标轴
▼优质解答
答案和解析

如图:∵直线y=(1/3)x-2与x轴交与点p,交y轴与点a
易知a坐标为(0,-2),p坐标为(6,0)
而抛物线与直线y=1/3x-2相交于a、b两点
所以a(0,-2)在抛物线上,代入抛物线解析式可得:-2=a(0+1)(0-4)
故a=1/2 注:(题干出现了两个a,要分清哪个是代数,哪个是点)
即抛物线解析式为:y=(1/2)(x+1)(x-4)
由此可通过直线及抛物线解析方程得出b点坐标为:b(11/3,-7/9)
假设存在点m(x,y),使⊿mab为Rt⊿.
则由勾股定理可知(x-0)²+[y-(-2)]²+(11/3-0)²+[-7/9-(-2)]²=(x-11/3)²+[y-(-7/9)]²
简化可得y=-3x-2
因为m在抛物线上,故m(x,y)还满足y=(1/2)(x+1)(x-4)
由此可得:x=0或-3,
∵当x=0时,m(0,-2)与a点重合
∴存在点m当其位于坐标(-3,7)时,⊿mab为Rt⊿.

如图:∵直线y=(1/3)x-2与x轴交与点p,交y轴与点a
易知a坐标为(0,-2),p坐标为(6,0)
而抛物线与直线y=1/3x-2相交于a、b两点
所以a(0,-2)在抛物线上,代入抛物线解析式可得:-2=a(0+1)(0-4)
故a=1/2 注:(题干出现了两个a,要分清哪个是代数,哪个是点)
即抛物线解析式为:y=(1/2)(x+1)(x-4)
由此可通过直线及抛物线解析方程得出b点坐标为:b(11/3,-7/9)
假设存在点m(x,y),使⊿mab为Rt⊿.
则由勾股定理可知(x-0)²+[y-(-2)]²+(11/3-0)²+[-7/9-(-2)]²=(x-11/3)²+[y-(-7/9)]²
简化可得y=-3x-2
因为m在抛物线上,故m(x,y)还满足y=(1/2)(x+1)(x-4)
由此可得:x=0或-3,
∵当x=0时,m(0,-2)与a点重合
∴存在点m当其位于坐标(-3,7)时,⊿mab为Rt⊿.
看了 如图抛物线y=a(x+1)(...的网友还看了以下:
到三角形三条边的距离都相等的点是这个三角形的( )A. 三条中线的交点B. 三条高的交点C. 三 2020-05-16 …
1、抛物线y=2x^2+8+m与x轴只有一个交点,m值为?2、一直抛物线y=ax^2+bx+c经过 2020-06-14 …
设a>0,已知曲线y=ax^2,与曲线y=lnx.在点M处相交.且在交点M处有公共切线,求交点M的 2020-07-12 …
三角形ABC,点D是AC的中点,点E,F是边BC的三等分点,M为AF,BD的交点,若三角形ABC的 2020-07-20 …
三角形的四线交点一.任意三角形的三边上的中垂线的交点1.交点与三个顶点联结后有什么性质2.与外接圆 2020-07-30 …
三角形:三角形的三条中线相交于一点,交点在三角形部三角形的三条角平分线交于一点,交点在三角形部锐角 2020-08-02 …
在△ABC内部取一点P使得点P到△ABC的三边距离相等,则点P应是△ABC的()A.三条高的交点B 2020-08-03 …
等腰三角形顶角的外角平分线与底边的关系是什么?到三角形三边的距离相等的点是A三边的垂直平分线的交点 2020-08-03 …
1.线段A,B上有两点M,N,AM:MB=5:11,AN:NB=5:7,MN=1.5,求AB的长度. 2020-10-30 …
已知:一次函数y=2x与y=-x+3的图像如图所示,直线l平行于y轴,交直线y=2x与于点p,交直线 2020-11-27 …