早教吧作业答案频道 -->数学-->
如图抛物线y=a(x+1)(x-4)的图像与直线y=1/3x-2相交于a、b两点,且该直线与x轴交与点p,交y轴与点a坐标轴上是否存在点m,使得三角形mab是直角三角形坐标轴
题目详情
如图抛物线y=a(x+1)(x-4)的图像与直线y=1/3x-2相交于a、b两点,且该直线与x轴交与点p,交y轴与点a
坐标轴上是否存在点m,使得三角形mab是直角三角形
坐标轴
坐标轴上是否存在点m,使得三角形mab是直角三角形
坐标轴
▼优质解答
答案和解析

如图:∵直线y=(1/3)x-2与x轴交与点p,交y轴与点a
易知a坐标为(0,-2),p坐标为(6,0)
而抛物线与直线y=1/3x-2相交于a、b两点
所以a(0,-2)在抛物线上,代入抛物线解析式可得:-2=a(0+1)(0-4)
故a=1/2 注:(题干出现了两个a,要分清哪个是代数,哪个是点)
即抛物线解析式为:y=(1/2)(x+1)(x-4)
由此可通过直线及抛物线解析方程得出b点坐标为:b(11/3,-7/9)
假设存在点m(x,y),使⊿mab为Rt⊿.
则由勾股定理可知(x-0)²+[y-(-2)]²+(11/3-0)²+[-7/9-(-2)]²=(x-11/3)²+[y-(-7/9)]²
简化可得y=-3x-2
因为m在抛物线上,故m(x,y)还满足y=(1/2)(x+1)(x-4)
由此可得:x=0或-3,
∵当x=0时,m(0,-2)与a点重合
∴存在点m当其位于坐标(-3,7)时,⊿mab为Rt⊿.

如图:∵直线y=(1/3)x-2与x轴交与点p,交y轴与点a
易知a坐标为(0,-2),p坐标为(6,0)
而抛物线与直线y=1/3x-2相交于a、b两点
所以a(0,-2)在抛物线上,代入抛物线解析式可得:-2=a(0+1)(0-4)
故a=1/2 注:(题干出现了两个a,要分清哪个是代数,哪个是点)
即抛物线解析式为:y=(1/2)(x+1)(x-4)
由此可通过直线及抛物线解析方程得出b点坐标为:b(11/3,-7/9)
假设存在点m(x,y),使⊿mab为Rt⊿.
则由勾股定理可知(x-0)²+[y-(-2)]²+(11/3-0)²+[-7/9-(-2)]²=(x-11/3)²+[y-(-7/9)]²
简化可得y=-3x-2
因为m在抛物线上,故m(x,y)还满足y=(1/2)(x+1)(x-4)
由此可得:x=0或-3,
∵当x=0时,m(0,-2)与a点重合
∴存在点m当其位于坐标(-3,7)时,⊿mab为Rt⊿.
看了 如图抛物线y=a(x+1)(...的网友还看了以下:
三条直线两两相交否定形式到底是什么?有一些否定形式是全否,比如说a、b均等于2转换成a、b均不等于 2020-05-24 …
,1)当k取何值时,这两个函数的图像有两个交点?k为何值时,这两个函数的图像没有交点?2)这两个函 2020-06-11 …
1:直线y=二分之一-4与x轴的交点坐标为,与y轴的交点坐标为?2:对于1:直线y=二分之一-4与 2020-06-14 …
f(x,y)这种函数是什么函数?如何在坐标画出来?那是否有f(x,y,z)这种函数?能在坐标画出来 2020-06-14 …
2个函数图像如何求交点坐标?一个一元一次方程,一个一元2次方程.求两个图像的交点坐标?如何求?eg 2020-07-29 …
如图所示,直线L与两坐标轴的交点坐标分别是A(-3,0),B(0,4),O是坐标系原点.(1)求直 2020-08-03 …
根据两个圆的方程如何求其交点坐标已知两个圆相交x2+y2-2x+10y-24=0x根据两个圆的方程如 2020-10-31 …
已知抛物线y=-x方=2x=m-1与轴有两个交点A\B(1)如果A坐标为(-1,0),求此抛物线的解 2020-11-01 …
下面是三个同学对问题“已知二次函数y=ax2+bx+c的图象与x轴的一个交点坐标是(3,0),你是否 2020-12-23 …
已知直线l1的参数方程为:x=1−2ty=3+t,t为参数.(1)将直线l1的参数方程化成直线的普通 2021-02-10 …