早教吧作业答案频道 -->数学-->
数列推导设等差数列An的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列,设等差数列An的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列,类比以上结论有:设等比数列Bn的前n项积为Tn,则T4,T8/T4,T12/T8,T16/T
题目详情
数列推导设等差数列An的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列,
设等差数列An的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列,
类比以上结论有:
设等比数列Bn的前n项积为Tn,则T4,T8/T4,T12/T8,T16/T12成等比数列,谁能证明一下啊.
证4,T8/T4,T12/T8,T16/T12成等比数列啦、是不是只要证出公比相等就可以
设等差数列An的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列,
类比以上结论有:
设等比数列Bn的前n项积为Tn,则T4,T8/T4,T12/T8,T16/T12成等比数列,谁能证明一下啊.
证4,T8/T4,T12/T8,T16/T12成等比数列啦、是不是只要证出公比相等就可以
▼优质解答
答案和解析
a5=a1+4d,a6=a2=4d...a(n+4)=a(n)+4d
(S8-S4)-S4=4d [S(4n+4)-S(4n)]=4d
同理可得S4,S8-S4,S12-S8,S16-S12成等差数列
t5=t1*q^4,t6=t2*q^4...t(n+4)=t(n)*q^4
(T8/T4)/T4=q^4 [T(4n+4)/T(4n)]=q^4
同理可得T4,T8/T4,T12/T8,T16/T12成等比数列
(S8-S4)-S4=4d [S(4n+4)-S(4n)]=4d
同理可得S4,S8-S4,S12-S8,S16-S12成等差数列
t5=t1*q^4,t6=t2*q^4...t(n+4)=t(n)*q^4
(T8/T4)/T4=q^4 [T(4n+4)/T(4n)]=q^4
同理可得T4,T8/T4,T12/T8,T16/T12成等比数列
看了 数列推导设等差数列An的前n...的网友还看了以下:
公差不为0的等差数列{an}中,已知前n项的和为Sn,若S8=S5+45,且a4,a7,a12成等 2020-05-16 …
已知正数数列﹛an﹜中,a﹦1,前n项和为Sn,对任意n∈N*.lgSn、lgn、lg(1/a已知 2020-06-06 …
高一数学数列项数比两个等差数列他们的前N项和之比为(5n+3)/(2n-1)求这两个数列第9项之比 2020-06-06 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
定义:若对任意n∈N*,数列{an}的前n项和Sn都为完全平方数,则称数列{an}为“完全平方数列 2020-07-16 …
设数列{an}的前n项和为Sn,已知A1=1,sn=na1-n(n-1),求证数列an为等差数列设 2020-07-18 …
若无穷数列{an}满足:①对任意n属于正整数,{a(n)+a(n+2)}/2≤a(n+1);②存在 2020-08-02 …