早教吧作业答案频道 -->数学-->
已知数列{an}是等差数列,an+1》an,a1·a10=160,a3+a8=37求数列an的通项公式若从数列{an}中一次取出第二项,第四项,第八项,.第2的n次方项,按原来的顺序组成一个新数列bn,求bn的前n项和
题目详情
已知数列{an}是等差数列,an+1》an,a1·a10=160,a3+a8=37
求数列an的通项公式
若从数列{an}中一次取出第二项,第四项,第八项,.第2的n次方项,按原来的顺序组成一个新数列bn,求bn的前n项和
求数列an的通项公式
若从数列{an}中一次取出第二项,第四项,第八项,.第2的n次方项,按原来的顺序组成一个新数列bn,求bn的前n项和
▼优质解答
答案和解析
(1)设数列首项为a1=a,公差为d,由等差数列特点知道a3+a8=37=a1+a10则
a(a+9d)=160
a+a+9d=37解得a1=5,a10=32或者a1=32,a10=5,利用an+1》an知道
a1=5,a10=32;an=5+3(n-1)=3n+2,n为正整数.
解答本题关键在于利用等差数列的性质,如果等号两边的下标之和相等则他们的和相等,比如本题a3+a8=a1+a10.其实等比数列也有类似性质,只是变为了下标之和相等则乘积相等,比如数列2,6,18,54.中2与54的乘积和6与18的乘积相等.
(2)取出的数列中的前几项列写如下:8,14,26...
则b=3*2^n+2,n为正整数.
sn=8+14+26+50+...+3*2^(n-1)+2 + 3*2^n+2
2*sn= 16+28+52+...+3*2^(n-1)+4 +3*2^n+4 +3*2^(n+1)+4
则2*sn-sn=sn=-8+2*(n-1)+3*2^(n+1)+4=3*2^(n+1)+2*n-6
所以sn=3*2^(n+1)+2*n-6
此处关键在于看得出来数列bn包含了一个等差数列和一个等比数列的和,根据这个特点构造另外一个前n项和相关的和式,然后错位相消.
说明*表示乘积,如2*3=6;^表示乘方,如2^2=4,2^(2+1)=8
a(a+9d)=160
a+a+9d=37解得a1=5,a10=32或者a1=32,a10=5,利用an+1》an知道
a1=5,a10=32;an=5+3(n-1)=3n+2,n为正整数.
解答本题关键在于利用等差数列的性质,如果等号两边的下标之和相等则他们的和相等,比如本题a3+a8=a1+a10.其实等比数列也有类似性质,只是变为了下标之和相等则乘积相等,比如数列2,6,18,54.中2与54的乘积和6与18的乘积相等.
(2)取出的数列中的前几项列写如下:8,14,26...
则b=3*2^n+2,n为正整数.
sn=8+14+26+50+...+3*2^(n-1)+2 + 3*2^n+2
2*sn= 16+28+52+...+3*2^(n-1)+4 +3*2^n+4 +3*2^(n+1)+4
则2*sn-sn=sn=-8+2*(n-1)+3*2^(n+1)+4=3*2^(n+1)+2*n-6
所以sn=3*2^(n+1)+2*n-6
此处关键在于看得出来数列bn包含了一个等差数列和一个等比数列的和,根据这个特点构造另外一个前n项和相关的和式,然后错位相消.
说明*表示乘积,如2*3=6;^表示乘方,如2^2=4,2^(2+1)=8
看了 已知数列{an}是等差数列,...的网友还看了以下:
1已知a^n=5,b^n=2,求(a^2*b^3)^n的值2若100a^2-kab+49b^2是完全 2020-03-30 …
在正数数列a[n]中,已知a[n]与2的等差中项等于S[n]与2的等比中项,求a[n]通项公式 2020-06-03 …
已知(a^n·b^m·b)^3=a^19·b^15,那么m、n的值分别是?3Q题中a^n指的是a的 2020-06-03 …
在数列an中,已知a(n+1)an=2an-a(n-1),且a1=2,(n属于正整数)(1)求证( 2020-06-04 …
递推线代行列式已知D1=a+b,Dn-aDn-1=B^n,Dn-bDn-1=a^n,由上两式有Dn 2020-06-25 …
已知a[n]为一个整形数组,试写出实现下列运算的递归算法.(1):求数组a中的最大整数.(2):求 2020-07-23 …
已知{a^n}是等差列数,证明m+n=p+q,a^m+a^n=a^p+a^q急, 2020-07-23 …
已知a(n+1)=[n/(n+1)]an,a1=1,(1)求a1,a2,a3的值(2)猜想an的通 2020-08-01 …
递推公式求通项公式已知a(n+1)=2an+1求an的通项公式 2020-08-01 …
幂的运算1已知10^x=3,10^y=2,求10^3x+2y的值2已知a^n=1/2,b^2n=3, 2020-12-31 …